
January 20, 1999 17:2 WSPC/141-IJMPC 0097

International Journal of Modern Physics C, Vol. 9, No. 8 (1998) 1–13
c© World Scientific Publishing Company

ACCURACY AND COMPUTATIONAL EFFICIENCY IN

3D DISPERSION VIA LATTICE-BOLTZMANN: MODELS

FOR DISPERSION IN ROUGH FRACTURES AND

DOUBLE-DIFFUSIVE FINGERING∗

HARLAN W. STOCKMAN and ROBERT J. GLASS

Sandia National Laboratories, Albuquerque
NM 87185-0750, USA

CLAY COOPER

Desert Research Institute
P. O. Box 60220, Reno, NV 89506-0220, USA

HARIHAR RAJARAM

Civil Engineering Department, University of Colorado
Campus Box 428, Boulder, CO 80309, USA

Accepted 5 October 1998

In the presence of buoyancy, multiple diffusion coefficients, and porous media, the dis-
persion of solutes can be remarkably complex. The lattice-Boltzmann (LB) method is
ideal for modeling dispersion in flow through complex geometries; yet, LB models of
solute fingers or slugs can suffer from peculiar numerical conditions (e.g., denormal gen-
eration) that degrade computational performance by factors of 6 or more. Simple code
optimizations recover performance and yield simulation rates up to ∼3 million site up-
dates per second on inexpensive, single-CPU systems. Two examples illustrate limits of
the methods: (1) Dispersion of solute in a thin duct is often approximated with disper-
sion between infinite parallel plates. However, Doshi, Daiya and Gill (DDG) showed that
for a smooth-walled duct, this approximation is in error by a factor of ∼ 8. But in the
presence of wall roughness (found in all real fractures), the DDG phenomenon can be
diminished. (2) Double-diffusive convection drives “salt-fingering”, a process for mixing
of fresh-cold and warm-salty waters in many coastal regions. Fingering experiments are
typically performed in Hele-Shaw cells, and can be modeled with the 2D (pseudo-3D) LB
method with velocity-proportional drag forces. However, the 2D models cannot capture
Taylor–Aris dispersion from the cell walls. We compare 2D and true 3D fingering models

against observations from laboratory experiments.

Keywords:

∗This paper was presented at the 7th Int. Conf. on the Discrete Simulation of Fluids held at the
University of Oxford, 14–18 July 1998.

1

January 20, 1999 17:2 WSPC/141-IJMPC 0097

2 H. W. Stockman et al.

1. Introduction

In many proposed repositories for nuclear or toxic waste, much of the porosity

consists of thin, sub-planar fractures. The apertures, or gaps between the rock

faces of the fracture, range from ∼ 10 µm to cm in width. Under natural pressure
gradients in the earth’s crust, dispersion through such fractures is characterized

by Péclet numbers (Pe) ≤ 1. However, flow rates can be accelerated greatly by
pumping, or by heating from radioactive waste, yielding Pe (defined relative to

fracture aperture) of ∼10 to ∼100.1,2
There is great interest in measuring the sorption of radionuclides in flowing frac-

tures, and careful laboratory tests have been performed.3–5 For practical reasons,

most lab experiments are run at higher Pe than field conditions, with relatively

short flow paths. In rough-walled fractures, it is very difficult to distinguish true

sorption from the enhanced dispersion that comes with stagnant zones, which sug-

gests that one should use more regular geometries for lab tests, such as prismatic

channels machined into solid rock samples.3 Such regular geometries may lead to a

peculiar dispersion effect not commonly recognized in the geologic and hydrologic

literature. We will refer to this anomalous dispersion as the DDG effect, after Doshi,

Daiya and Gill, who produced the first detailed description.

Subtle buoyancy effects may also enhance dispersion in vertical fractures.

Double-diffusive fingering7,8 can lead to rapid mixing, even in systems that appear

to be gravitationally stable. Failure to understand such effects at the microscopic

scale can result in gross errors in the extrapolation of lab tests to the kilometer-scale

of transport in fractured rocks.

In this paper, we discuss the application of LB methods to the study of small

scale dispersion in fractures, focusing on the DDG effect and double-diffusive fin-

gering. Our intent is to show that with careful optimization and choice of boundary

conditions, LB methods are sufficiently accurate and efficient to solve problems

relevant to real-world hydrology and geochemistry.

2. Optimization and Performance

The LB method, and the BGK simplification, are well-described by Qian et al.9

The evolution of the particle distribution function fi satisfies

fi(x+ ei, t+ 1) = (fi(x, t)− f eqi (x, t))/τ , (1)

where x is a node position in the lattice, ei is one of i allowed velocities (e.g., i =

0, 1, . . . , 18 in D3Q19 model9), t is the time-step, f eqi is the equilibrium distribution,

and τ is the BGK relaxation parameter, which determines the viscosity and diffusion

coefficients. In typical LB computer programs, a translation or streaming function

performs the left side Eq. (1), and a collision function performs the right side.

For the dispersion of dilute tracers, the standard BGK method can be simpli-

fied, and programs can be substantially optimized. A single lattice can be used

for a carrier fluid, which determines a velocity field u obeying the Navier–Stokes

January 20, 1999 17:2 WSPC/141-IJMPC 0097

Accuracy and Computational Efficiency in . . . 3

equations;10 typically we use the 19-vector D3Q19 lattice with the 2nd-order equi-

librium distribution given by Martys and Chen11:

f eq0 =
ρ

3

[
1− 3
2
u2
]

(2)

f eqi = tiρ

[
1 + 3ei · u+

3

2
(3eiei : uu− u2)

]
for i �= 0 , (3)

where ρ =
∑
i fi, and ti = 1/18 for the 6 vectors along the Cartesian axes, and

ti = 1/36 for the remaining vectors. The u determined from the carrier fluid is then

used for each tracer. Flekkøy et al.12 and Noble13 noted the advection–dispersion

equation is linear in u, so the tracer equilibrium distributions need only be linear

in u as well. For a tracer s, the equilibrium distribution is of the form:

f eqs,i = A+B(es,i · u) , (4)

where A and B are fixed by the requirement that solute be conserved (ρs =
∑
f eqs,i),

and the requirement that the solute flux at equilibrium is due entirely to advection

(
∑
f eqs,ies,i = ρs · u) Compared to Eq. (3), Eq. (4) requires far fewer floating point

operations.

Further savings are realized by using lattices with fewer vectors for the tracers;

in 2D, four Cartesian vectors are adequate, and in 3D, the six Cartesian vectors

will suffice. Wolf-Gladrow14 and others have suggested low-vector lattices for mod-

eling diffusion, but Noble13 appears to have first performed a Chapman–Enskog

expansion for Cartesian lattices, recovering the advection–dispersion equation and

estimating the error term. We compared both the 6-vector 3D lattice and the full

19-vector D3Q19 lattice for tracers dispersion in nontrivial geometries, for Pe ∼ 70
and Re ∼ 80, and found the dispersion coefficients from 6- and 19-vector methods
agreed to within 0.2%. (We emphasize that low-vector lattices, and Eq. (4), are

used only for the dilute tracers, not the carrier.)

In many dispersion problems, u is at steady state, and need not be recalcu-

lated at each time-step. Furthermore, periodic boundary conditions on u are often

appropriate, even when tracer dispersion is not periodic, as in the SC dispersion

problem described in Sec. 3. A strategy for such problems is to use a 19-vector

carrier fluid in a single repeat unit, Nx by Ny by Nz lattice units on a side, then

save the equilibrium u(x, y, z). The memory used for the 19-vector carrier fluid is

then reclaimed, and reallocated for additional repeat units of the tracer lattices in

the x direction. The velocity field at x, y, z is then u((xMODNx), y, z).

The efficiency of the overall algorithm depends a great deal on the storage of

the 3D lattice in memory. For systems that contain a high proportion of solids, it is

often practical to store only those sites that represent open fluid or solids bounding

fluid; a 3D pointer table obtains the location of the vectors in a linear array. Such

an approach often leads to high locality, and can speed up the overall algorithm,

by reducing the number of loads to the cache. For simplicity, we focus here on data

structures that allocate the same amount of memory to all sites, be they solid or

January 20, 1999 17:2 WSPC/141-IJMPC 0097

4 H. W. Stockman et al.

fluid. We next consider the trade-offs inherent in data structures that optimize for

the translation versus collision step.

Let indices s, i, z, y, and x represent, respectively, the chemical component, vec-

tor number (e.g. i = 0 through 18 in D3Q19), and the Cartesian directions. Two

obvious alternative schemes (for coding in C) are:

float *****ff; /*arrays ff[s][i][z][y][x] */,

and

typedef float site[NVELOC]; /* NVELOC = 19 or 6 for 3D */

site ****ff; /*arrays ff[s][z][y][x][i] */

The latter holds all the vectors close in memory, and might seem much more effi-

cient. However, the first method can make the translation step very fast, principally

because much of the translation is accomplished by pointer swaps. The efficiency

is most significant for 3D, 6-vector tracers; only two of the six vectors are actually

moved in memory, and those moves (in the + and −x directions) involve just one
index and are easily optimized. The second method generates much cache traffic,

and the translation step requires substantial effort to decompose and redistribute

the vectors from each site.

Figure 1 gives simplified source code for a collision function involving just one

3D, 6-vector tracer and a predefined, static flow field uu. To lessen the burden

of dereferencing five-dimensional arrays, the pointers are dereferenced manually

in steps, at the beginning of the inner loops. To ease the alias problem that

plagues the C computer language, the six vectors for each site are copied into

local f0,f1,...,f5 for most manipulations. Finally, by factoring the feq equa-

tions, the number of arithmetic operations is greatly reduced. With judicious use of

register declarations, the most important pointers and local variables can be kept

in registers throughout the calculation, even on an Intel × 86 chip.
Table 1 shows performance achievable on single-processor CPUs for several ap-

plications, given in units of MUPs (millions of site updates per second). For com-

parison, rates of 0.14 to 2 MUPs have been reported13,15 for 2- and 3D calculations

on a 64-node partition of the CM-5, containing 256 vector processors. This com-

parison is not intended to denigrate parallel computers. We estimate the 6-vector

dispersion algorithms (2nd test problem, Table 1) are nearing the RAM streaming

limit, with speed controlled by the rate that site data can be fetched from and

returned to memory. In such conditions, it makes more sense to split the workload

among many processors, rather than seek a faster CPU.

The generation of “denormal” numbers can greatly degrade performance in LB

dispersion calculations. Denormals are part of the IEEE 754 standard, and are

used to provide gradual underflow, allowing one to represent numbers smaller than

∼10−37, the traditional lower limit of IEEE single precision.16Most microprocessors
do not handle denormals in hardware; instead, they provide the option of either

ignoring the IEEE standard, and rounding the denormal to 0, or they pass the value

January 20, 1999 17:2 WSPC/141-IJMPC 0097

Accuracy and Computational Efficiency in . . . 5

�� ����������	����������	�
���������	�����������	�
��������	����������� ��
������� ����� ����	 ������� ����� ���	
������ ������� � ��� �	 ��� �	 ��� �	 ��� �� ��	! ���""	 #$%
��
�� &'������ ��#�% �(�� �� �)������� ������	 ��#�% '� ����'�� ���'�* ��
��'� +���&'�����������,���������� ����� ��� ���-�� ���(�� ����

������ ������� ������ �.�� ������'��
'(� (�� '(� (�� '(� (�� '(� (������

�
'(� ��������	
���-�� ��� ��� ��� �������
�����
���	 �� �/� �)������� �'���'-��'�(��
���-�� �.�� �0�1�� -���� 0���0���0��� 0��� .���20�1�� �'��.20�1�	
���� �������������
���������
�����	
���� ������������������
�������������
��������	

������ ������� ������� ����	
'(� ���'�����	
�.�� �����'���� ����'��	

�0�1� � �*�����#�%	 -��� � �*� � �0�1�	
.���20�1��234�5678��0�1�	 �'��.20�1��234�),5��0�1�	

�������	 �9(�	 �::��
���� � ��#�%	 ���'��� � ���'�#�%	 �� ����� ����� ��'(���� ��
���� � ��#�%#�%#�%	 ���� � ��#�%#�%#�%	 ��
� � ��#�%#
%#�%	
���� � ��#�%#�%#�%	 ��
� � ��#�%#
%#�%	 ���� � ��#�%#�%#�%	
�������	 �9(�	 �::��

���'�� � ���'���#�%	
��� � ����#�%	 �� ����� '((�� ��'(���� ��
��� � ����#�%	 ��� � ����#�%	 ��
 � ��
�#�%	
��� � ����#�%	 ��
 � ��
�#�%	 ��� � ����#�%	
����������	 �9(�	 �::���::�::���� ::���� ::��
�

::���� ::��
� ::�����
'������(������ �� � �	 �� �� � � ;2& (����� ��
���'����� � ���'��#�%	
'�����'��������
� ��(�'(��	 �� ��0������� ������(��� ��
�� � ���#��%*�	 �� � ���#��%*�	 �� � ���#��%*�	
�.� � �� � ����	 �.� :� �� � ����	 �.� :� �
 � ���
	
�.� :� �� � ����	 �.� :� �
 � ���
	 �.� :� �� � ����	
'�����'������� ��-��(���-��< ��

���� � �
	 ���� � ��	 ���
 � ��	
���� � ��	 ���
 � ��	 ���� � �
	
��(�'(��	 �� �(�� (��� � ��
!

0�� � �.��.���20�1�	 �� '0��'�'� �� ���� ��
0�� � ���0��	 0�� � ���0��	 0�� � 0�����	
�.� �� �'��.20�1�	
�� ��� -��< �.� (�= �#% ������ ��
���� � ���-��� : �.� : 0��	
���� � ���-��� : �.� : 0��	
���
 � �
�-��� : �.� � 0��	
���� � ���-��� : �.� � 0��	
���
 � �
�-��� : �.� : 0��	
���� � ���-��� : �.� � 0��	
!

!
!

! �� 43& +���&'�����������,������� ��

Fig. 1. Simplified collision function for one 3D 6-vector tracer, ∂u/∂t = 0.

January 20, 1999 17:2 WSPC/141-IJMPC 0097

6 H. W. Stockman et al.

Table 1. Performance for LB algorithms (MUPs = Millions site Updates Per
Second).

Processor MUPs

Test problem: 19-vector flow R(no tracers), 50% solids

200 MHz Pentium Pro 0.29

400 MHz Pentium II 0.70

500 MHz alpha 21164a 1.10

Test problem: 3D 6-vector tracer dispersion, steady flow field, 10% solids

200 MHz Pentium Pro 1.55

400 MHz Pentium II 2.55

Test problem: 3D, 3-component double-diffusive fingering with buoyancy

200 MHz Pentium Pro 0.15

400 MHz Pentium II 0.30

to a software routine for handling. Since the latter process can be excruciatingly

slow, the compiler default is generally to round to 0. However the Intel × 86 proces-
sors, such as the Pentium Pro, not only handle denormals in hardware, but provide

no option to round these values to 0. Manipulations of denormals in × 86 proces-
sors are slow, flushing the processor pipeline with each load. The problem can be

delayed by using double precision, with a factor ∼1.6 loss in initial speed and factor
2 loss of memory efficiency, and no gain in true accuracy for dispersion coefficients.

Slug dispersion problems have a strong tendency to generate denormal numbers.

As a slug of solute travels downstream, very low concentrations are produced on

the leading and trailing edges of the slug. In short order, the system contains many

concentrations less than 10−37. Our experience with dispersion around cylinder and

sphere arrays showed up to a factor 6 performance loss within ∼ 104 steps. This
weakness of denormal processing was recognized by William Kahan, the principal

architect of the IEEE standard, and a simple solution is given in his Berkeley lecture

series (available on the World Wide Web as ieee754.ps): all initial and boundary

conditions that are formally at 0 concentration, are set instead to a small number,

say 10−32. This artifice eliminates the slowdown, and has no effect on the calculated

dispersion coefficients.

3. Accuracy and Choice of Wall Conditions

In recent years, much was written on the choice of wall conditions for LB calcula-

tions. The basic problem is that after the streaming step, there are fi pointing into

the solids, but none pointing out from the solids; these missing particle distribu-

tions must be created in a consistent manner. For pure flow calculations, the simple

bounce-back condition, which fills in the missing fi by inverting particle distribu-

tions at the solid wall, can yield acceptable accuracy. To achieve such accuracy with

bounce-back, the collision parameter τ is kept reasonably low, and the wall solid wall

is taken to be 1/2 lattice unit out from the solid nodes.17 The subterfuge of using

January 20, 1999 17:2 WSPC/141-IJMPC 0097

Accuracy and Computational Efficiency in . . . 7

the 1/2 location is commonly referred to as “reinterpreted” bounce-back. However,

when applied to tracer particles, the justification for re-interpreted bounce-back is

less clear, since the tracers have some residence time “behind” the 1/2 wall.

An alternative wall condition for tracer dispersion was suggested by Noble.13 In

brief, one places the zero-flow position on the wall, by one of the many methods

suggested in the literature.17,18 Both carrier fluid and tracer particles are allowed

to stream along the walls. For tracer particles, the missing part of the distribution

is obtained by reflecting across a plane tangent to the wall; in effect, this is a slip

condition. The tracer distributions then are sent through the relaxation step, in

which they inherit the diffusion coefficients typical of the free fluid.

Figure 2(a) compares the accuracy of the traditional bounce-back, and the

method suggested by Noble,13 for 3D LB algorithms in the classic Taylor–Aris

dispersion problem. For this test, a steady-state Poiseuille flow is allowed to de-

velop between two parallel plates. We take the x-axis parallel to the flow direction,

and the y-axis perpendicular to the plates. Then, a slug of solute is injected into

the flow. Aris19 showed that after some characteristic time tc ∼ hy2/Dm (where hy
is the channel width and Dm is the molecular diffusion coefficient), the projection

of the solute distribution onto the x-axis is nearly Gaussian, and the dispersion

coefficient D∗ follows the simple rule:

D∗/Dm = 1 + Pe
2/210 , (5)

where the Péclet number Pe ≡ (hy ·U)/Dm (U is the cross-channel averaged speed).
Equation (5) is taken as the predicted D∗/Dm. We can also “measure” D∗ for our

numerical experiment by the method of moments19:

D∗/Dm = 1/2 dm2/dt/Dm , (6)

where m2 is the second moment, or variance of the solute distribution, projected

onto the x-axis. The difference between Eq. (5) and Eq. (6) is our estimate of error

in Fig. 2(a) (calculated for a fixed Pe = 20). For all but the narrowest channels, the

method suggested by Noble proves more accurate than the simple bounce-back. The

bounce-back method reaches a peak error of about 3.8%, before slowly decreasing.

The causes of this non-monotone behavior are not clear, but there are probably

several competing effects.

Despite the modest accuracy, there are several good reasons to retain bounce-

back for dispersion problems. The first is that the method leads to extremely simple

and efficient code. Second, with bounce-back, there is a simple relationship between

the number of solid nodes in the system and the volume of solids modeled; the

benefits of this simple relationship become more obvious when one attempts to im-

plement dissolution and precipitation, which can create very complicated patterns

of dendritic growth. If growth occurs by a transition state rule,20 the surface area

and volume of each point in the automaton must be consistently known. Third,

the use of bounce-back can be justified on a simpler basis: dispersion data in ex-

periments are rarely measured to an accuracy of better than 10%, and theories for

January 20, 1999 17:2 WSPC/141-IJMPC 0097

8 H. W. Stockman et al.

������� ���	�
 ��

� � �� �� �� ��

�
�
��
�
�
��
�
�

����

���

���

���

���

���

���

�	
��
�����

�	���
�

(a)

��
� �� ���

�
�
�
�
�

���

���

����

�����

������

�������

����������

	
� ���
������ ������

��

������� ���������

(b)

Fig. 2. (a) Comparison of accuracy for bounce-back versus no-flux method (Ref. 13) for Taylor–
Aris dispersion between infinite plates (3D algorithms). Fig. 2(b) Comparison of experimental
results (Ref. 21), LB calculations (this study) and Stokesian theory (Ref. 22). Pe defined relative
to particle diameter and averaged Darcy flow speed.

predicting dispersion in complex, 3D geometries rarely come within a factor of 2 of

experimental measurements.

The latter point is illustrated by Fig. 2(b), which compares experimental data

for dispersion in a simple cubic (SC) array of spheres (Gunn and Pryce21), with

our LB results for the same geometry, and theory developed by Koch et al.22 We

might regard this as one of the simplest nontrivial 3D geometries, yet there is

substantial disagreement between the lab results and Koch et al. analysis. To be

fair, the latter authors recognized the short-comings of their approach (including the

assumption of Stokesian flow, while modeling experiments with particleRe in excess

of 100). However, several other studies have attempted to duplicate the Gunn and

Pryce experiments, never obtaining better than a factor of two disagreement.23–25

The variability of the experimental results in Fig. 2(b) is also notable. Most of

these theories predict nearly straight-line behavior of D∗/Dm on a log–log plot, for

sufficiently high Pe. We have plotted 95% “prediction lines” for the experimental

data, based on a 3rd-order fit to the log(D∗/Dm) versus log(Pe) (3rd-order provided

a narrower prediction band than orders 1, 2, 4 and 5). Though the LB results do

not match the experimental data exactly, they do fall within the prediction bands.

4. Applications

4.1. Dispersion in fractures: the DDG effect

Consider the 3D duct shown in Fig. 3(a), which extends infinitely along the x-axis,

but is closed on the other four walls. It is commonly assumed that if hy/hz << 1,

dispersion in the duct will follow the Taylor–Aris solution (Eq. 5). Surprisingly, as

long as the duct has vertical sidewalls, dispersion never approaches the Taylor–Aris

solution, regardless of the aspect ratio. As hy/hz → 0, the solution approaches:

D∗/Dm = 1 + 7.95Pe
2/210 (7)

January 20, 1999 17:2 WSPC/141-IJMPC 0097

Accuracy and Computational Efficiency in . . . 9

(a)

�� � ��
��� ��� ��� ��� ��� ���

��
�
�
�
�
��
��

�
�

�
�
�
�

�

�

�

�

�

�

�

�

�

����������	
��� ������
� ����
	

��	
��
 � ������	

��

(b)

Fig. 3. (a) Geometry for duct dispersion. The DDG effect arises from sidewall drag on a slug of
solute injected into the flow. Fig. 3(b) Comparison of LB calculations with Chatwin and Sullivan
(Ref. 26); DTA is the Taylor–Aris estimate of dispersion (Eq. 5).

so for high Pe, the close-walled duct approaches a dispersion coefficient nearly eight

times the Taylor–Aris value. Figure 3(a) gives a hint about the origin of this en-

hanced dispersion; the edges of the solute slug are swept back by the vertical duct

walls, since the flow speed must vanish at the walls. Figure 3(b) compares our mea-

surements of the DDG effect with the calculations of Chatwin and Sullivan;26 the

agreement is reasonably good, given that Chatwin and Sullivan used two methods

that sometimes disagreed by 5%.

Curiously, the DDG effect is not observed in some experiments with rough-

walled “fractures”. For example, Tsuda et al.27 performed experiments on disper-

sion in alveolated channels (models for the human lung), with stagnant pockets

lining a central flow channel. They obtained reasonably good agreement between

experiments and simple 2D solutions, that did not consider the finite extent of the

system in the z direction. This result suggests that roughness may greatly diminish

importance of the DDG effect.

By examining a cross-section of a real fracture (Fig. 4(a), provided by S. Brown

of New England Research), we can propose two means by which roughness ame-

liorates the DDG effect. First, assume the flow is perpendicular to the page; the

fracture aperture pinches and swells, containing numerous partial walls parallel to

the direction of flow; thus we propose that there is always an effective duct wall near

at hand for flow through a real fracture (like the walls parallel to the x–y planes in

Fig. 3(a)). Second, the flow through such a rough fracture is likely channelized, with

pockets of nearly stagnant fluid lining the main flow paths; perhaps the capacitance

of these pockets so increases the D∗ as to overwhelm the DDG effect.

Figure 4(b) shows an heuristic test of these hypotheses. The right side illus-

trates three simple geometries for comparison: the straight walled duct (at top);

a duct with baffles parallel to the flow direction; and a duct lined by baffles both

perpendicular and parallel to the flow, creating nearly stagnant fluid pockets. The

January 20, 1999 17:2 WSPC/141-IJMPC 0097

10 H. W. Stockman et al.

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

0 5 10 15 20 25

APERTURE

TOP SURFACE

BOTTOM SURFACE

Horizontal Distance (mm)

H
ei

gh
t (

m
m

)

(a)

������ ����	 	
 ���

�� ��	
����	���

� � � � � � � � �

�
�
�
��

�
�
�
�
�
�

�

�

�

�

�

����������	
�������
����	

��
������� ����

����������� ����

������� �� �� ����

������� ���� ����

��	
�����

(b)

Fig. 4. (a) Cross-section of real fracture between rock faces. Figure 4(b) Dispersion in closed-
walled channel relative to open-walled channel, for 3 geometries on right; stagnant pockets in the
alveolated channel (bottom) appear to minimize DDG effect.

Pe is kept reasonably constant for all three (Pe of 11 to 14), though there is some

ambiguity in defining the effective “width” for the baffled geometries. At left are

plotted the dispersion coefficients as functions of aspect ratio (normalized to a duct

that is open on the left and right sides). The baffles parallel to the flow direction

(middle case) have a modest effect, while the alveolated duct (bottom case) sees a

much more rather dramatic reduction. These results suggest the stagnant pockets

have such a marked effect on dispersion, that they probably overwhelm the DDG

effect for many real fractures.

4.2. Double-diffusive fingering: 3D versus 2D models

When two solutions have solutes with very different Dm, they may admix rapidly

by fingering, even when the initial layering is gravitationally stable. The leftmost

side of Fig. 5 shows a small portion of a Hele–Shaw cell, which consists of two

plexiglas plates, parallel to the page, separated by a 0.05 cm gap. Initially, the

bottom of the cell contains a salt solution, and the top of the cell contains a less-

dense sugar solution. Because the Dm of salt is ∼ 3 times that of sugar, salt can
diffuse upward into the sugar-rich region, creating a locally denser solution that

is now gravitationally unstable, which leads to rapid fingering.8 This phenomenon

has been widely studied in the context of ocean mixing. For example, where the

Mediterranean flows into the Atlantic, warm salty water overlies colder less saline

water; heat diffuses 100 times as fast as salt, so as the Mediterranean heats up the

underlying brine, eventually causing gravitational instability and fingering.7

For a Hele–Shaw cell, double-diffusive fingering is characterized by the solutal

Rayleigh number for each component:

Ra = β ·∆C · g sin θ · (h2/12) · L/(Dm · ν) , (8)

January 20, 1999 17:2 WSPC/141-IJMPC 0097

Accuracy and Computational Efficiency in . . . 11

Fig. 5. Double-diffusive fingering in Hele–Shaw cell. Leftmost is experiment (less dense sugar
solution initially in top of cell, and salt solution in bottom). Middle is 2D LB model; rightmost is
3D LB model.

where the β is a molar expansivity, h is the cell thickness, ≈ 0.05 cm; θ is the angle
to horizontal; ∆C is concentration difference, top-to-bottom; and ν is kinematic

viscosity. The L is a characteristic size of the initiating disturbance; it is customary

to use the width of initial “smearing” after the divider pulled. However, the divider

likely leaves a turbulent mixed zone, which is poorly characterized and constitutes

a velocity initial condition as well as a concentration initial condition.

In the 2D LB model, the cell thickness is parameterized as h, and the drag

force12,28 is 8ν u/h2. The advantage of the 2D model is computational efficiency,

and low memory use, so very large simulations can be run. The disadvantage is that

it cannot directly capture the Taylor–Aris dispersion from the small separation (h)

in the z direction. The fluid speed need not be great to cause substantial Taylor–

Aris smearing; 3 to 10 cm/hour will double the effective dispersion coefficient. Many

fingers reach this speed by the end of an experiment; and higher speeds can be

reached in the initial stages, when the plexiglas strip is pulled and the oscillations

in the interface quickly relax.

Figure 5 compares a lab experiment (leftmost) with the 2D and 3D LB models

(middle and right, respectively). Both LB models use a simple step of height L

(Eq. (8)) to initiate fingering. The 3D model uses 5 fluid cells in the z direction,

and captures the Taylor–Aris dispersion; consequently, the fingers are wider and

more “smeared”, with less fine structure than is seen in the 2D model. Otherwise,

the rates of finger growth, and the number of fingers per distance on the horizontal

axis, are remarkably similar in the two LB models. The LB models also bear striking

similarity to the fingers observed in lab experiments. However, for both LB models,

the rate of finger growth was ∼ 2 to 4 times slower than in the experiments; this
discrepancy may reflect the difficulty in matching the conditions of the lab Hele–

Shaw cell, after the strip separating the fluids is pulled.

January 20, 1999 17:2 WSPC/141-IJMPC 0097

12 H. W. Stockman et al.

5. Conclusions

With simple optimizations, the BGK LB method is fast enough, on a single-CPU

computer, for modeling rough fractures containing millions of nodes. Simple bounce-

back wall conditions are less accurate than other methods,13 but yield acceptable

errors (< 4%), given the inherent uncertainty of dispersion experiments in complex

geometries. Application of LB to the DDG problem suggests that in rough fractures,

the capacitance of stagnant pockets will overwhelm the effects of duct sidewalls.

LB provide useful models for double-diffusive fingering, probably limited most by

the difficulty of matching initial conditions for concentration and velocity. 3D LB

models are necessary to capture the effects of wall dispersion in Hele–Shaw cells,

but the 3D fingering models provide simulations qualitatively similar to the 2D

models in terms of finger growth rate and number.

Acknowledgments

This work was performed at Sandia National Laboratories supported by the U.S.

Dept. of Energy under contract # DE-AC04-94AL85000, and was funded by the

U.S. Department of Energy Basic Energy Sciences (BES) Program and the Sandia

National Laboratories LDRD Program.

References

1. H. W. Stockman, Water Resources Res. 33, 1823 (1997).
2. H. W. Stockman, C. Li, and J. L. Wilson, Geophys. Res. Lett. 24, 1515 (1997).
3. C. Wels, L. Smith, and T. T. Vandergraaf, Water Resources Res. 32, 1943 (1996).
4. T. T. Vandegraaf, D. J. Drew, D. Archambault, and K. V. Ticknor, J. Contaminant
Hydrology 26, 83 (1997).

5. Y. Fujikawa, F. Masami, D. J. Drew, and T. T. Vandegraaf, J. Contaminant Hydrology
14, 207 (1993).

6. M. R. Doshi, P. M. Daiya, and W. N. Gill, Chem. Engrg. Sci. 33, 795 (1978).
7. J. Y. Holyer, J. Fluid Mech. 147, 169 (1984).
8. C. Cooper, R. J. Glass, and S. Tyler, Water Resources Res. 33, 517 (1997).
9. Y. H. Qian, D. d’Humières, and P. Lallemand, Europhys. Lett. 17, 479 (1992).
10. X. Shan, Phys. Rev. E 55, 2780 (1997).
11. N. Martys and H. Chen, Phys. Rev. E 53, 743 (1996).
12. E. G. Flekkøy, U. Oxaal, T. Feder, and T. Jøssang, Phys. Rev. E 52, 4952 (1995).
13. D. R. Noble, Ph.D. Thesis, Univ. of Illinois, Urbana-Champaign, 1996.
14. D. Wolf-Gladrow, J. Stat. Phys. 79, 1023 (1994).
15. D. Muders, Ph.D. thesis, Universität Bonn, 1995.
16. S. P. Morse, E. J. Isaacson, and D. J. Albert, The 80386/387 Architecture (John Wiley
& Sons, New York, 1987).

17. S. J. Chen, D. Mart́ınez, and R. Mei, Phys. Fluids 8, 2527 (1996).
18. L. Ginzbourg and D. d’Humières, J. Stat. Phys. 84, 927 (1996).
19. R. Aris, Proc. Royal Soc. 235A, 67 (1956).
20. A. C. Lasaga, in Kinetics of Geochemical Processes, Rev. in Mineralogy 8, ed. A.C.
Lasaga et al. (Mineralogical Soc. America, Washington DC, 1981) p 135.

21. D. J. Gunn and C. Pryce, Trans. Inst. Chem. Engrs. 47, T341 (1969).

January 20, 1999 17:2 WSPC/141-IJMPC 0097

Accuracy and Computational Efficiency in . . . 13

22. D. L. Koch, R. G. Cox, H. Brenner, and J. F. Brady, J. Fluid Mech. 200, 173 (1989).
23. C. K. Lee, C.-C. Sun, and C. C. Mei, Int. J. Heat Mass Transfer 39, 661 (1996).
24. A. Eidsath, R. G. Carbonell, S. Whitaker, and L. R. Herrmann, Chem. Engrg. Sci.
38, 1803 (1983).

25. J. Salles, J.-F. Thovert, R. Delaney, L. Prevors, J.-L. Auriault, and P. M. Adler, Phys.
Fluids 5 2348 (1993).

26. P. C. Chatwin and P. J. Sullivan, J. Fluid Mech. 120, 347 (1982).
27. A. Tsuda, W. J. Federspiel, P. A. Grant, Jr., and J. J. Fredberg, Chem. Engrg. Sci.
46, 1419 (1991).

28. R. Holme and D. H. Rothman, J. Stat. Phys. 68, 409 (1992).

