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[1] A sequential, geostatistical inverse approach was developed for electrical resistivity
tomography (ERT). Unlike most ERT inverse approaches, this new approach allows
inclusion of our prior knowledge of general geological structures of an area and point
electrical resistivity measurements to constrain the estimate of the electrical resistivity
field. This approach also permits sequential inclusion of different data sets, mimicking the
ERT data collection scheme commonly employed in the field survey. Furthermore, using
the conditional variance concept, the inverse model quantifies uncertainty of the estimate
caused by spatial variability and measurement errors. Using this approach, numerical
experiments were conducted to demonstrate the effects of bedding orientation on ERT
surveys and to show both the usefulness and uncertainty associated with the inverse
approach for delineating the electrical resistivity distribution using down-hole ERT arrays.
A statistical analysis was subsequently undertaken to explore the effects of spatial
variability of the electrical resistivity-moisture relation on the interpretation of the change
in water content in the vadose zone, using the change in electrical resistivity. Core samples

were collected from a field site to investigate the spatial variability of the electrical
resistivity-moisture relation. Numerical experiments were subsequently conducted to
illustrate how the spatially varying relations affect the level of uncertainty in the
interpretation of change of moisture content based on the estimated change in electrical

resistivity. Other possible complications are also discussed.
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1. Introduction

[2] The DC resistivity survey is an inexpensive and
widely used technique for investigation of near-surface
resistivity anomalies. It recently has become popular for
the investigation of subsurface pollution problems [National
Research Council (NRC), 2000]. In principle, it measures
the voltage generated by a transmission of current between
electrodes implanted at the ground surface. Apparent (bulk
or effective) electrical resistivity is then calculated and used
to interpret subsurface anomalies.

[3] Classical formulas for determining apparent electrical
resistivity assume homogeneity, and the potential field is
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smooth because of its highly diffusive nature. Consequently,
conventional interpretations of electrical resistivity survey
data have been virtually ineffective for environmental
applications, where electrical resistivity anomalies are
subtle, complex, and multiscale. To overcome these diffi-
culties, a contemporary electrical resistivity survey has been
designed to collect extensive electric current and electric
potential data sets in multi-dimensions. Without assuming
subsurface homogeneity, a mathematical computer model is
employed to invert the data sets to estimate the resistivity
field, using a regularized optimization approach [e.g., Daily
et al., 1992; Ellis and Oldenburg, 1994; Li and Oldenburg,
1994; Zhang et al., 1995]. However, the general uniqueness
and resolution of the three-dimensional electrical resistivity
inversion have not been investigated sufficiently thus far
[Carle et al., 1999; NRC, 2000].

[4] While the physical process is different, the governing
equation for electric currents and potential fields created in
the electrical resistivity survey is analogous to that for
steady flow in saturated porous media. The mathematical
solution to the inversion of an electrical resistivity survey is
therefore similar to that of a groundwater hydrological
survey. Groundwater hydrologists and reservoir engineers
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have attempted to solve the inverse problem of flow through
multidimensional, heterogeneous porous media for the last
few decades [e.g., Gavalas et al., 1976]. Extensive reviews
on the inverse problem of subsurface hydrology and various
solution techniques are given by Yeh [1986], Sun [1994],
and McLaughlin and Townley [1996]. They concluded that
prior information on geological structure, and some point
measurements of parameters to be estimated are necessary
to better constrain the solution of the inverse problem. A
similar finding was also reported by Oldenburg and Li
[1999] and Li and Oldenburg [2000] for the inverse prob-
lems in geophysics.

[s] Groundwater hydrologists also have used a multi-
component linear estimator (cokriging) to estimate the
hydraulic conductivity field from scattered measurements
of pressure head and hydraulic conductivity in saturated
flow problems [Kitanidis and Vomvoris, 1983; Hoeksema
and Kitanidis, 1984]. The popularity of cokriging is attrib-
uted to its ability to incorporate spatial statistics, point
measurements of hydraulic conductivity, and hydraulic head
into the estimation and to yield conditional mean estimates.
Cokriging is also capable of quantifying the uncertainty
associated with its estimate due to limited information and
heterogeneity. Kitanidis [1997] articulated the differences
between cokriging and the classical inverse methods in
subsurface hydrology. Nevertheless, cokriging is a linear
estimator and it is limited to mildly nonlinear systems, such
as aquifers of mild heterogeneity, where the variance of the
natural logarithm of hydraulic conductivity, ot k, is less
than 0.1. When the degree of aquifer heterogeneity is large
(oﬁlK > 1), the linear assumption becomes inadequate.
Therefore cokriging cannot take full advantage of the
hydraulic head information to obtain a good estimate of
hydraulic properties [Yeh et al., 1996].

[6] To overcome this shortcoming, Yeh et al. [1995,
1996], Gutjahr et al. [1994], and Zhang and Yeh [1997]
developed an iterative geostatistical technique, referred to as
a successive linear estimator (SLE). In this technique, a
linear estimator was used successively to incorporate the
nonlinear relation between hydraulic properties and the
hydraulic head. This method also employs a conditional
covariance concept to quantify reductions in uncertainty due
to the incorporation of subsequent information. Yeh et al.
[1995, 1996] and Zhang and Yeh [1997] demonstrated that
with the same amount of information, the SLE method
revealed a more detailed hydraulic conductivity field than
cokriging. Hughson and Yeh [1998, 2000] extended the SLE
method to the inverse problem in three-dimensional, var-
iably saturated, heterogeneous porous media. On the basis
of the SLE algorithm, Yeh and Liu [2000] developed a
sequential SLE technique for hydraulic tomography to
process the large amount of data created by the tomography,
and subsequently characterize aquifer heterogeneity. They
investigated the effect of monitoring intervals, pumping
intervals, and the number of pumping locations on the final
estimate of hydraulic conductivity, and they established
guidelines for a design of a hydraulic tomography test.

[7] In section 2 of this paper, we introduce the concept of
stochastic representation of electrical resistivity tomography
(ERT) inverse problems. In sections 3 and 4 we describe the
development of a geostatistically based sequential SLE
methodology for ERT inversion problems. Section 5 offers
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numerical examples that illustrate the usefulness of the new
inversion approach, and describes the effects of geological
structures on the layout of electrical resistivity surveys. The
relation between the electrical resistivity and the moisture
content of 25 soil cores were measured and analyzed for
spatial variability in section 6. Impacts of spatial variability
on the estimated changes in moisture content in the vadose
zone, using ERT surveys were explored and discussed in
section 7.

2. Stochastic Conceptualization of ERT
Inverse Problems

[8] Assume that in a geological formation, the electric

current flow induced by an electrical resistivity survey can
be described by

V- (€(x)Vo(x)) +1(x) = 0, (1)

where x is location, ¢ is electric potential [V], I represents
the electric current source per volume [A/m?], and € is the
electrical conductivity [S/m], a reciprocal of the electrical
resistivity, p [ohm m], which is assumed to be locally
isotropic. The boundary conditions associated with (1) are

blg,=¢* £V -nlg=g, )
where ¢* is the electric potential specified at boundary Gy,
q denotes the prescribed electric current per unit area, and n
is the unit vector normal to the boundary G,.

[o] The electrical conductivity or resistivity of geological
media varies spatially due to inherent heterogeneous geo-
logical processes [Sharma, 1997]. One way to describe the
spatial variability of the electrical conductivity is the sto-
chastic representation approach, similar to that used in geo-
hydrology for the variability of hydraulic properties of
aquifers and vadose zones [see Gelhar, 1993; Yeh, 1998].
Specifically, the natural logarithm of the electrical conduc-
tivity, In€(x), of a geological formation is to be considered as
a stochastic process. The process is described in terms of an
unconditional mean, (Ing(x)) = X (( ) denotes the expected
value) and perturbations, x(x), which have an infinite
number of possible realizations, characterized by a joint
probability distribution. Assuming that the perturbation is a
second-order stationary stochastic process, its joint proba-
bility distribution can then be adequately represented by its
unconditional covariance function, R,,. The covariance
function essentially depicts the average spatial correlation
structure (pattern) of the electrical conductivity of a field in
the statistical sense. The use of the natural logarithm trans-
formation is merely a mathematical convenience. Similarly,
the electric potential field induced during an ERT survey can
be considered as a stochastic process and presented by ¢(x) =
V(x) + v(x), where V(x) = (d(x)) and v(x) are the uncondi-
tional perturbations of the electric potential.

[10] Suppose that there are electrical conductivity meas-
urements (referred to as the primary variable or primary
information) from borehole electrical resistivity surveys,
X¥= (In§(x;) — X) where /=1, 2,.. .n,, and n,_is the total
number of electrical conductivity measurements. From
these measurements, we have estimated the mean and
covariance function of the electrical conductivity field. An
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ERT survey is then conducted, and we have collected m sets
of n, electric potential (perturbation) values, v;*, where j =
ny + 1, n +2,...., ny, + m X n, Hereinafter, they are
referred to as secondary information. We then seek an
inverse model that can produce the electric potential and
electrical conductivity fields that preserve the observed
electrical potential and electrical conductivity values at
sample locations. In addition, the fields must possess the
statistics (i.e., the mean and covariance function) describing
their spatial variability, and also satisfy underlying physical
processes (i.e., the governing electric potential equation). In
a conditional probability concept, such an electric potential
or electrical conductivity field is a conditional realization of
d(x) field or Ing(x) field, respectively, among many possible
realizations of the ensemble. The conditional electrical
conductivity fields of the ensemble can be expressed as
the sum of conditional mean electrical conductivity and its
conditional perturbation, i.e., In&,. (x) = X.(x) + x(x). The
subscript ¢ denotes the state of being conditioned. Similarly,
the conditional potential fields can be written as ¢.(x) =
Vix) + v. (x). While many possible realizations of such
conditional In§(x) and ¢(x) fields exist, the conditional mean
fields (i.e., X.(x) and V.(x)) are unique, although not
necessarily exactly reflective of the true fields.

[11] One way to derive these conditional mean fields is to
solve the inverse problem to obtain all possible conditional
realizations of the electrical resistivity field. An average of
the possible realizations will yield the conditional-mean
electrical resistivity field (see Hanna and Yeh [1998] and
others for geohydrology applications). An alternative to the
above is to solve the inverse problem in terms of the
conditional mean equation.

[12] By substituting the conditional stochastic variables
into the governing electric potential equation (1) and taking
the expected value, the conditional-mean equation takes the
form

V- SV + V- (0 Vre(x) +1(x) = 0. (3)

In equation (3), the current source, /(x), is considered
deterministic. Notice that the true conditional mean X .(x)
and V.(x) fields do not satisfy the continuity equation (3)
unless the second term involving the product of perturba-
tions is zero. This term represents the uncertainty because of
a lack of information of the two variables at locations where
measurements are not available. The uncertainty will vanish
under two conditions, namely, (1) all the electrical conduc-
tivity values in the domain are specified (i.e., X (x) = 0), or
(2) all the electric potential values in the domain are known
(i.e., vd(x) = 0). In practice, these two conditions will never
be met, and evaluation of this term is intractable at this
moment. Consequently, in the subsequent analysis we will
assume this term is proportional to the conditional mean
electric potential gradient such that we can rewrite the mean
equation as

Vo [Beett (x) VIV (x)] + I(x) = 0. (4)

This conditional mean equation has the same form as
equation (1) but variables are expressed as the conditional
effective electrical conductivity, X . (x), and conditional
mean electric potential field, V.(x). The conditional effective
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electrical conductivity thus is a parameter field that
combines the conditional mean electrical conductivity
Y(x) and (Xc(x)ch(x»(VVc(x))*]. According to this
concept, the conditional effective electrical conductivity is
a parameter field that agrees with the electrical conductivity
measurements at sample locations, and it yields a condi-
tional mean electric potential field that preserves values of
electric potential measurements when it is employed in the
forward model (4), subject to boundary conditions (2). On
the basis of this concept, an optimal inverse solution to
equation (4) secks the conditional effective electrical
conductivity field. The successive linear estimator (SLE)
approach is appropriate for this purpose.

3. Geostatistically Based SLE Inversion for ERT

[13] Below we present a brief description of the SLE
algorithm. A detailed discussion of the algorithm is given
by Yeh and Liu [2000]. The SLE algorithm, in general,
consists of seven steps. Step 1 starts with a linear estimator
using primary and secondary information to estimate the
value of the primary variable at j locations where no
information is available about the variable:

K= NXF+ N vE, (5)

where x is aj x [ vector of the estimated primary variable,
X, (i.e., the estimated ) at j locations and x *, and v* are
available information about the primary and secondary
variables (i.e., electrical conductivity, and potential measure-
ments, respectively) at ny (ng = ny + n,) sample locations.
The n; x j matrix, Ny, and n, x j matrix, X,, are the
cokriging weights applied to the primary and the secondary
information. They are related to the spatial covariance
function of the primary and the secondary variable (i.e., R,
and R,,, respectively) as well as the cross-covariance
between the primary and secondary variables, R, ,.. The cov-
ariance function, R, , of the primary variable is prescribed a
priori, and R,,, and R, are calculated using a first-order
analysis and the given R, [see Yeh and Liu, 2000]. To
include the uncertainty due to measurement errors associated
with primary and secondary information, additional var-
iances can be added to the diagonals of R, and R,,. The
weights are then obtained from the solution of a cokriging
system of equations. In step 2, the covariance of the primary
variable is modified to reflect effects of the available
information. That is,

r+l) _ r (7 (r)
( x Rgcgc o RX;XX — RN (6)

where R{)is aj x n, subset of RY), covariance of x. The
superscript in parentheses is the iteration index and » = 0 at
this time. In step 3, the newly estimated variable field from
equation (5) is used to simulate the electric potential field, v,
using the forward model (4). In step 4, the conditional
covariances, R(Vrﬁ D and their cross-covariance, Rﬁgf D are
updated using a first-order analysis. For step 5, these newly
evaluated covariances and cross-covariances compute new
weights, \,, using

(%, =R
RN, =R” . ()

vV
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Step 6 is where the new weights, along with the difference
between simulated v\ and observed v*, are used to improve
the estimate of the primary variable. That is,

KD = 50 N\ (V* _ V<r>). (8)

In equation (8), %) represents the conditional primary
variable estimate at iteration r. In step 7, the weights are then
used to update conditional covariances for the next iteration
using

RUHD =R R (f))\v‘ (9)

This newly updated primary variable field (8) and the new
conditional covariance (9) are used again in steps (3) and (4),
followed by steps (5) through (7). Steps (3) through (7) are
repeated until no improvement in the estimate of the primary
variable is found (i.e., when the variance of the estimated
primary variable stabilizes). Notice that parallel computing
procedures can be implemented in many steps of SLE.

4. Sequential Inversion of ERT Surveys

[14] The above discussion describes the SLE method for
the secondary information collected during one excitation
(i.e., one current source location) in an ERT survey. The
method can simultaneously include all the secondary infor-
mation collected during all the excitations in an ERT
survey; however, the system of equations, (7), can
become extremely large and ill conditioned. Therefore
stable solutions to the equations can become difficult to
obtain [Hughson and Yeh, 2000]. To avoid this problem, the
secondary information collected from excitations at differ-
ent locations is used sequentially. Specifically, our sequen-
tial method starts the inversion with the secondary
information collected from the excitation at one selected
location. Once the estimated field converges to the given
criterion, the newly estimated conditional effective primary
field and its conditional covariance are used as prior
information for the inversion of the next excitation. That
is, the conditional effective x is used to evaluate both the
conditional mean v, and sensitivity matrix associated with
the excitation at the new location. Using the first-order
analysis, the sensitivity matrix and conditional covariance,
R, ., yield the v covariance and its cross-covariance with ,
which are subsequently employed to derive the new
weights. With the conditional mean of v, the new weights,
and the observed v*, equation (8) then produces a new
estimate of the conditional effective x, representing the
estimate based on the information from the excitation at the
new location. The iterative process (similar to steps (3)
through (7)) is then used to include the nonlinear relation
between v and . Once the solution converges and iteration
stops, the same procedure is applied to the information of
the next excitation. This sequential process continues until
the data sets created from all the excitations are all used
in the inversion.

[15] Our sequential approach uses the estimated electrical
conductivity field and covariance, conditioned on previous
sets of potential measurements, as prior information for the
next estimation based on a new set of current source data.
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The conditional moments are propagated sequentially until
all the data sets are fully utilized. Such a sequential
approach thus allows accumulation of the vast amount of
secondary information obtained from an ERT survey, while
maintaining the system of equations to be solved at a
manageable size and with the least numerical difficulties.
Vargas-Guzman and Yeh [1999] provided a theoretical proof
to show that such a sequential approach is identical to the
simultaneous approach for linear systems. This sequential
algorithm for hydraulic tomography was also tested and
verified in sandbox experiments [Liu et al., 2002].

5. Numerical Examples

[16] To demonstrate the ability of our inverse method for
ERT, a vertical profile of a hypothetical vadose zone (200
cm X 10 em x 200 cm) was created and discretized into 20
x 1 x 20 elements of 1000 cm®. A stochastic random field
generator [Gutjahr, 1989] was used to assign an electrical
conductivity value to each element. The electrical conduc-
tivity field was assumed to have a geometric mean of
0.01261 [S/m] and a covariance with an exponential corre-
lation structure and a variance of 0.5 for the natural
logarithm of the electrical conductivity field. The correla-
tion structure was anisotropic with a horizontal correlation
of 240 cm and a vertical correlation scale of 20 cm. This
anisotropic structure yielded a heterogeneous and stratified
electrical conductivity distribution shown in Figure la.

[17] Two cases were examined to illustrate effects of
stratification on an ERT array layout. In cases I, an ERT
surface array is deployed on the hypothetical stratified
formation, representing an ERT array parallel to stratifica-
tion. In cases II, the same surface array is deployed on the
surface of a formation (Figure 1b) identical to the hypo-
thetical vadose zone in cases | but rotated counterclock-
wise 90°, representing an ERT array perpendicular to
stratification.

[18] During both ERT surveys, a pole-pole array was
used. Nineteen potential electrodes (triangles in Figures
Ic, 1d, le, and 1f) and one current electrode (circle) were
used during each survey. In this example, the current
electrode was moved 4 times from one position to another
to create four voltage/current data sets, in which each set
consists of 19 potential measurements and one current
measurement. Note that the graphic depicts four circles:
Only one current electrode was used in each survey, but it
was positioned at four different locations for the four
surveys. The ERT surveys were simulated numerically using
equation (1), assuming the surface to be a boundary with no
electric current flux and the remaining three sides of the
vadose zone to be prescribed electric potential boundaries.

[19] Once the voltage/current data sets became available
and one electrical conductivity measurement was taken
(square in Figures lc and 1d), the sequential inverse
approach was employed to estimate the electrical conduc-
tivity field. Figures 1c and 1d depict the estimated condi-
tional effective x fields for cases I and II, respectively. A
comparison between Figures 1c and 1d shows that the same
surface array results in better estimates at depths in case II
than in case I. Similarly, Figures le and 1f show that the
conditional variance (uncertainty of estimate) is smaller at
depths in case II than in case I. The conditional variance at a
location indicates the uncertainty of the estimate at the
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location. For example, if the conductivity at a location is
known exactly, the conditional variance at that location is
zero. Otherwise, the conditional variance is equal to the
variance of the electrical conductivity field. Alternately, the
conditional variance is smaller than the variance because of
incorporation of the secondary information during the
inverse modeling. Therefore the smaller the conditional
variance at a given location, the better the estimate. Figure
le shows that the surface ERT yields small conditional
variances only near the land surface where electric potential
measurements were taken. The variance increases rapidly
with depth, indicating that the effectiveness of the survey
decreases because of the stratification of the electrical
conductivity field of the medium. Notice that during the
generation of the electrical conductivity field, the stratifica-
tion is denoted statistically by a long correlation scale in one
direction and a short correlation scale in the other. Notice
also that during the inversion of the ERT survey data sets for
the two cases, the information about the covariance function
corresponding to each case was prescribed, implying the
difference in the inverse results comes solely from the
nature of the inverse problem. As a consequence, Figures
la—1f manifest the fact that orientation of stratification can
affect the effectiveness of an ERT array layout. That is,
when the array is perpendicular to the stratification (case II),

potentials at measurement locations possess information
over greater extents (depths in this study) than when the
array is parallel to the stratification. Because of this fact and
because most of geological formations are horizontally
stratified, a down-hole ERT array is generally more effective
in depicting the electrical conductivity field over a greater
volume than a surface ERT array.

[20] In addition to the first two cases, case III and case IV
were also investigated. In case III, two down-hole ERT
arrays (19 potential electrodes and 1 current electrode) were
used. For case IV, a combination of the down-hole arrays (19
potential electrodes and 1 current electrode) and one surface
array (20 potential electrodes) were deployed in the hypo-
thetical electrical conductivity field. Figure 2a illustrates the
estimated conditional effective electrical conductivity field
for case III. A combination of the surface and the down-hole
electrode arrays (case V) yields a higher-resolution image of
the electrical conductivity field near the surface (Figure 2b).
This is attributed to the additional surface-monitoring array.
This conclusion is also evident in Figures 2¢ and 2d, where
the corresponding conditional variance distribution for each
case is shown.

[21] While the conditional variance provides uncertainty
of the estimate, it is an ensemble statistic, which may not be
appropriate for the single realization described in these
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examples. Better criteria to compare the estimated conduc-
tivity field with the true field are the average absolute error
norm, L1 and the mean square error norm, L2, which are
defined as

(10)

Ly
== IXi—xil
N l:1 1 1

where x; and ¥; represent the true and the estimated
perturbation of the conditional effective electrical con-
ductivity after a natural logarithm transformation, respec-
tively, i indicates the element number, and N is the total
number of elements in the hypothetical vadose zone. The
smaller the L1 and the L2 value, the better the estimate.
Figures 2e¢ and 2f show plots of the true x versus
estimated conditional effective x fields and the L1 and L2
values associated with the two cases. The results are
consistent with those based on the conditional variance
criterion. Also illustrated in Figures 2e and 2f is the
discrepancy between the true and the estimate (scattering
around the 45° line) caused by the limited measurements
of the electric potential field.

[22] In the above inversion examples, the voltage/current
measurements were assumed to be error-free and statistical
parameters such as mean, variance, and correlation scales

required for the inversion were assumed to be known or
estimated beforehand. For hydraulic tomography, both the
effects of error in measurements, and uncertainty of the
statistical parameters on the estimate were investigated
numerically by Yeh and Liu [2000] and using sandbox
experiments [Liu et al., 2002]. In short, they found that
uncertainty of the statistical parameters does not influence
the estimate significantly if sufficient and accurate secon-
dary information is available. However, errors in point
measurements of hydraulic conductivity or hydraulic head
can have significant impacts on the estimate. They reported
that the benefit of hydraulic tomography vanishes rapidly if
the hydraulic head monitoring locations remain the same.
In addition, network design issues were explored, such as
the sample interval for head measurements and the location
of pumping in terms of the correlation scale of the
heterogeneity. We believe their results also hold for the
ERT.

6. Translation of Electrical Resistivity
Distribution to Water Content Distribution
for Hydrological Applications

[23] Electrical resistivity tomography has been used to
monitor spatial and temporal variation of soil water content
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[e.g., Daily et al., 1992; Zhou et al., 2001; Brainard et al.,
2001]. During an infiltration event, the water content of
geological media is generally assumed to be the only
element that undergoes dramatic changes. Therefore track-
ing the change in the electrical resistivity has often been
regarded as a useful means to delineate the change of the
water content in the vadose zone. Specifically, an ERT
survey is conducted on a site before an infiltration event in
order to obtain the background distribution of the electrical
resistivity. After the infiltration event, an ERT survey is
undertaken again to acquire the electrical resistivity distri-
bution of the wetted soils. Next, the difference between the
two electrical resistivity distributions is used to interpret
infiltration and the movement of the water plume, assu-
ming a relation between the electrical resistivity and water
content.

[24] In order to relate the water content to resistivity, a
power law has been used:

p=p0™". (11)

In (11), p is bulk electrical resistivity, p, is a fitting para-
meter that is related to the electrical resistivity of pore
water, m is a fitting parameter, and 6 denotes water content.
Using (11), the difference between the natural log of the
electrical resistivity before and after infiltration then
becomes

Alnp = —mAIn6. (12)
According to this equation, if m is constant and known
precisely, then the change of Inp is linearly proportional to
the change of Inf. However, the change in Inp may not
directly correspond to the change of Inf if m exhibits
significant spatial variability. This implies that the same
amount of change in moisture content may lead to different
amounts of change in the electrical resistivity in different
part of a medium. Notice the variability of p, does not
appear in equation (12). A statistical analysis based on
equation (12), assuming independence between m and 6,
leads to an expression for the variability in change in Inp:

var[Anp] = M? var[AIn6] + ©% var([m], (13)
where var[Alnf], var[Alnp], and var(m) are variances of
Alnb, Alnp and m, respectively. The change in mean Inf is
denoted by ©, and M is the mean value of m. According to
equation (13), the variability of Alnp depends on not only
the variance of Alnf but also the variance (spatial varia-
bility) of m, M, and ©.

[25] To investigate the spatial variability of p, and m in
the field, the electrical resistivity as a function of the
moisture content was measured for 25 samples collected
from a borehole at the Sandia-Tech Vadose Zone (STVZ)
infiltration field site, Socorro, New Mexico. The field site
sediments are part of the Sierra Ladrones Formation, Up-
per Santa Fe Group. They consist of fine to coarse
grained, poorly consolidated, ancestral Rio Grande axial-
river deposits with intermittent layers of debris flow
sediments and sedimentary layers of eolian sands (see
Brainard et al. [2001] for a complete site description). A
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total of 25 samples were collected from eight 1.5-m
lengths of a continuous core from a borehole at the field
site.

[26] The samples were highly unconsolidated and easily
disintegrated. They had to be repacked into sample rings
to bulk density values determined from preliminary in situ
measurements. The bulk densities were estimated to be
1.53 g cm > for fine-medium sand, 1.61 g cm > for
medium-coarse sand, and 1.34 g cm™> for clays. The
samples were then placed in a hanging column apparatus
and were allowed to reach moisture equilibrium at tensions
from 100 cm down to 0 cm to obtain the main wetting
curve (MWC). Also, we reversed the process by measur-
ing the moisture retention for the main drainage curve
(MDC) starting at the saturated moisture content. Pressure
chambers were used to drain the samples at pressures
greater than 100 cm. Moisture equilibrium was determined
during imbibition by weighing the samples daily and
observing changes in moisture content. Equilibrium was
determined during drainage by monitoring the water level
in the burette.

[27] The electrical resistivity was measured at each mois-
ture equilibrium point for both the MWC and MDC by
placing the sample in an impedance analyzer sample holder,
and applying a logarithmic sweep of frequencies across the
sample. A Hewlett Packard model 4129A LF [Knight,
1991] impedance analyzer was connected to a personal
computer for automated data acquisition of impedance
measurements. The impedance value corresponding to the
frequency not affected by polarization at the sample/elec-
trode interface was used to calculate the electrical resistivity.
The electrical resistivity was calculated by multiplying the
sample resistance by the ratio of the sample cross-sectional
area to the sample length [Knight, 1991]. Equation (11) was
then fit to the measured electrical resistivity and moisture
data to determine the values for p, and m. A plot of the
measured electrical resistivities at each moisture content and
best fit curves for the 25 cores is shown in Figure 3, where it
can be seen that significant variability exists in the electrical
resistivity and moisture content relation.

[28] Frequency distributions of the values for Inp, and
Inm are shown in Figure 4, and it appears that both Inp,
and Inm are approximately normally distributed. Assum-
ing they follow lognormal distributions, the statistics for
these two parameters of the core samples were deter-
mined. The geometric mean of p, is 7.036 [ohm m] and
the variance, standard deviation, and percent of coefficient
of wvariation for Inp, are 0.633, 0.796, and 40.8, respec-
tively. For the parameter m, the geometric mean is 1.336,
and variance, standard deviation, and percent of coeffi-
cient of variation for Inm are, 0.034, 0.185, and 63.7,
respectively.

[29] A spatial statistical analysis was also conducted.
Variograms for the parameters are presented in Figure 5.
For Inp,, an exponential variogram model was selected. The
sill, range, and nugget values are 0.8, 3.5 m, and 0.08,
respectively. Similarly, an exponential variogram model was
chosen for m. The sill, range, and nugget values for Inm are
0.043, 3.5 m, and 0.01, respectively. Statistics of the two
parameters manifest their spatial variability and spatial
correlation structures. Figures 6a and 6b are plots of these
parameter values with depth and the lithology along the
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Figure 3. The electrical resistivity-moisture data and the
best fit curves for samples from STVZ site at Socorro, New
Mexico.

borehole. The side-by-side Figures 6a and 6b show that the
spatial variation of these parameter values appears to
correspond qualitatively to the lithology. Further, we found
that the relation between the electrical resistivity and the
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the STVZ site, showing their spatial structures.

moisture content did not appear to be hysteretic [Baker,
2001].

7. Uncertainty in Hydrologic Interpretation

[30] Our field data demonstrated a significant spatial
variability of the electrical resistivity and moisture content
relation. In this section, the effects of this variability are
investigated with regard to moisture movement, which was
monitored using ERT surveys in the vadose zone.

[31] We investigated two scenarios in a hypothetical
vadose zone of 200 cm x 20 cm X 200 cm. In scenario
1, the electrical resistivity field before and after infiltration
was known precisely. For scenario 2, the electrical resistiv-
ity fields were estimated from a down-hole ERT survey. The
hypothetical vadose zone was discretized into 200 elements,
and each element had a dimension of 20 cm in both
horizontal directions and 10 cm in the vertical. The unsa-
turated hydraulic properties of each element were assumed
to be described by the Mualem-van Genuchten model [van
Genuchten, 1980]:

—0,)[1 + (Jooy )] +0, (14a)

0(w) = (05

K(w) = Ko (1= o) @11+ (o)) /114 (o)),
(14b)

where  is the capillary pressure head, K is the saturated
hydraulic conductivity, o and a are shape factors, and b =
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Figure 6. Spatial distributions of (a) pom, and (b) lithology along a borehole at the STVZ site, Socorro,

New Mexico.

1—1/a. The variability of saturated moisture content, 6, and
residual moisture content, 6, is generally negligible; both
were treated as deterministic constants with a value of 0.366
and 0.029, respectively. The parameters, K, o, and a, were
considered as random fields with the geometric mean of
0.0063 cm s~', 0.028 ecm™', and 2.0, respectively. The
variances of InK,, Ina, and Ina were 0.1, 0.1, and 0.01,
respectively. It was also assumed that all three parameters
possessed the same exponential covariance function with a
horizontal correlation scale of 240 cm and a vertical correla-
tion scale of 20 cm. Following the generation of random
hydraulic parameter fields, a hydrostatic capillary pressure
head distribution, with zero capillary pressure head at the
bottom, was assigned to the vadose zone as the initial
condition. The corresponding water content distribution was
considered as the background 6 distribution (Figure 7a).
Next, a steady infiltration event was simulated using a finite
element model for flow and solute transport in variably
saturated media: Modified Method of Characteristics 3
(MMOC3) [Srivastava and Yeh, 1992]. The top center of
the vadose zone (from x = 80 to 120 cm, y =0 to 20 cm, and
z =200 cm) was treated as a constant head boundary with a
capillary pressure head of —80 c¢cm. The remainder of the
surface and the two sides of the domain were considered as
no-flux boundaries; the bottom was assumed to be a water
table. Once the simulation of the steady flow field was
completed, the resulting water content distribution was
denoted as the 6 distribution after infiltration (Figure 7b).
The change of the Inf distribution before and after the
infiltration was then computed and plotted in Figure 7c.

[32] In order to convert the simulated moisture content
distribution to an electrical resistivity field, each element of
the vadose zone was assigned a pair of p, and m values
using the random field generator. For the two aforemen-
tioned scenarios, three cases, A, B, and C, were considered.
The m fields for the three cases were generated with a
geometric mean of 1.35. The variances of Inm fields for
cases A, B, and C, are 0.0, 0.033, and 0.1, respectively.
While the three cases have different m fields, they have an
identical p,, field with a geometric mean of 8.5 [ohm m] and
variance of Inp, equal to 0.1. Again, similar to the hydraulic
parameter field, these fields have an exponential covariance
structure with a horizontal correlation scale of 240 cm and
the vertical correlation scale of 20 cm. Notice that although
hydraulic parameter fields, p,, and m fields are spatially
correlated, they are mutually independent.

[33] For cases A, B, and C of scenario 1, equation (11)
was used in conjunction with the generated p,, and m fields,
and the background 6 distribution to construct the back-
ground electrical resistivity map for this hypothetical site.
Similarly, the electrical resistivity distribution was also
obtained after infiltration, corresponding to the 6 distribu-
tion after infiltration. Then, the change in Inp was derived
by subtracting the Inp after infiltration from the background
Inp. The changes in Inp for cases A, B, and C of scenario 1
are shown in Figures 8a, 8b, and 8c, respectively, and are
plotted against mAln6 of case A along with the values of L1
and L2 in Figures 9a, 9b, and 9c.

[34] According to Figures 7c, 8a, 8b, and 8c, the change
in Inp reflects the change in In6 only if the electrical
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Figure 7. (a) Simulated moisture distribution (Inf) before infiltration. (b) Simulated moisture
distribution (Inf) after infiltration. (c¢) Spatial distribution of change in moisture content (Alnf) (i.e.,

differences between Figures 7a and 7b).

resistivity field is known exactly at every point and m is a
constant (i.e., variance of Inm = 0, Figure 8a). As the
variance of Inm increases, the discrepancy between change
in Inp and change in Inf increases (Figures 8b and 8c). In
other words, because of the variability of the parameter m,
different parts of a geological medium exhibit different
amounts of change in the electrical resistivity even if they
undergo the same amount of change in water content.

[35] In scenario 2, the background electrical resistivity
distribution and the 0 distribution after infiltration are no
longer known precisely. Instead, both electrical resistivity
distributions were estimated using our sequential inverse

approach to interpret the simulated ERT data collected from
two down-hole arrays (circles, triangles, and a square) as
indicated in Figures 8d, 8e, and 8f. Specifically, in cases A,
B and C of scenario 2, forward simulations of ERT surveys
were conducted in the resistivity fields, created from the
random p, and m fields and 0 distributions before and after
infiltration. The boundary conditions were set to be the
same as in previous cases. These simulations yielded
electrical potential measurements at specified monitoring
locations of each case, which afterward were used in the
inverse model to derive estimated p fields. The changes in
Inp for cases A, B, and C were then calculated and are
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Figure 8. Distributions of changes in Inp (a, b, and ¢) for cases A (the variance of m = 0.0), B (the
variance of m = 0.033), and C (the variance of m = 0.1) in scenario 1(no uncertainty in Inp), respectively.
Distributions of changes in Inp estimated from ERT surveys (d, e, and f) for cases A, B, and C of scenario
2 (uncertainty in Inp from ERT surveys), respectively.
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Corresponding scatterplots for Figures 8c, 8d, and 8e, respectively, for scenario2 (with uncertainty in

Inp).

shown in Figures 8d, 8e, and 8&f, respectively. They also are
plotted against mAInd of case A of scenario 1 and are
shown in Figures 9d, 9¢, and 9f, along with the values of L1
and L2. Again, the measurements were considered error-free
and other inputs to the model were assumed to be known
exactly.

[36] In this scenario, our estimated electrical resistivity
fields are uncertain because of limited information and
spatial variability. A comparison between Figure 7c¢ and
Figure 8d demonstrates that even with uncertainty, the
change in Inp in case A of scenario 2 still resembles the
change in In when m is constant. The resemblance deteri-
orates as the variance of m increases, however (see Figures
8¢ and 8f for cases B and C of scenario 2, respectively).
Notice anomalous changes in Inp appear close to the
locations (Figure 8f) where potential measurements were
taken. This indicates that a great variation in m can
significantly exacerbate the effect of the limited data set
on the interpretation of ERT results. Consequently, caution
must be taken during interpretation of the change in
moisture content based on the change in the electrical
resistivity alone. The accuracy of the interpretation, accord-
ing to equation (13), depends on the accuracy of the ERT
inversion, the mean value of m, the amount of change in
mean Inf, the variability of m, and the change in In6.

[37] We emphasize that our illustrations consider only
the variation of parameters of the simple power law for the
electrical resistivity-moisture relationship in a synthetic
vadose zone. Under field conditions, many other factors
can further complicate the interpretation of an ERT survey,
and certainly, the validity of the power law deserves
further exploration regarding the electrical resistivity-mois-
ture relation. For instance, while the power law fits our
field data quite well, it may not be suitable for other
geological media. The electrical resistivity is also well
known to be sensitive to salt concentration, clay content,
ion exchange, temperature [Keller, 1987] and other site-
specific attributes.

[38] While the electrical resistivity was assumed to be
locally isotropic in this study, in the field it can be
anisotropic and measurement-scale dependent. The electri-
cal resistivity anisotropy of a medium at a given measure-
ment scale, similar to the hydraulic conductivity anisotropy,
is an artifact caused by averaging distinct electrical resis-
tivity values of layers of material at scales smaller than the
measurement scale. The anisotropy therefore depends on the
average length and thickness of the layers, and the variance
of each layer’s electrical resistivity, which may vary with
the scale of measurement (or the size of discretization of the
domain used in ERT inversion). In general, the electrical
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resistivity is greatest in the direction perpendicular to
layering and least in the direction parallel to layering.
Moreover, because the electrical resistivity of each layer
can vary with moisture content and therefore among the
layers, the anisotropy of the averaged bulk electrical resis-
tivity is expected to vary with the moisture content. Specif-
ically, the electrical resisitivity anisotropy ratio is defined as
the ratio of the bulk electrical resistivity of electric current
flow perpendicular to bedding to the resistivity of electrical
current flow parallel to bedding. The anisotropy ratio will
increase as the medium becomes less saturated in a manner
similar to the moisture-dependent anisotropy in unsaturated
hydraulic conductivity described by Yeh et al. [1985a,
1985b, 1985c].

[39] These possible complications necessitate further the-
oretical and experimental investigations of the fundamental
electrical resistivity-moisture relation. Their effects on the
inversion of ERT and its hydrological interpretation deserve
further exploration. Finally, while the ability of ERT surveys
for detecting changes in moisture content is attractive, we
must point out that many hydrological analyses demand
accurate measurements of moisture content distributions,
not just the monitoring of soil moisture changes.

8. Conclusion

[40] A sequential, geostatistical inverse approach for
hydraulic tomography was adapted for electrical resistivity
tomography. The sequential inverse approach mimics the
sequential ERT data collection scheme commonly em-
ployed in a traditional field survey. The inverse method
constrains the estimate of the electrical resistivity field by
including borehole measurements of the electrical resistiv-
ity, in addition to potential measurements from the ERT
survey, and information of geological structures through the
statistic spatial covariance. The sequential approach is
computationally efficient, allows fine-grid discretization of
the solution domain, and permits sequential inclusion of
different data sets. Furthermore, the conditional variance in
the inverse model quantifies uncertainty in the estimate
caused by the spatial variability of the electrical resistivity,
uncertainty in measurement errors, and a limited number of
data sets.

[41] Through numerical experiments based on our
inverse approach, we showed that geological bedding
affects effectiveness of the sampling array of ERT. Sam-
pling perpendicular to bedding (down-hole array) increases
the resolution of the electrical resistivity estimate because
of the long correlation in the direction parallel to bedding.
Conversely, the effectiveness of the surface array (sampling
parallel to bedding) is restricted to a shallow depth because
of the long correlation scale along bedding and the short
correlation scale in the direction perpendicular to bedding.
Significant variability of the electrical resistivity-moisture
relation was observed in our field samples. Both the
theoretical analyses and numerical experiments suggest that
such a spatially varying relation can exacerbate the level of
uncertainty in the interpretation of change of moisture
content based on the estimated change in the electrical
resistivity. These results call for additional studies of the
underlying physics of the electrical resistivity-moisture
relation and its spatial variation. Last, development of
better methodologies is needed for incorporating this var-
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iability in the interpretation of the ERT survey, such that
ERT can be an effective monitoring tool for vadose zone
processes.
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