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[1] We consider the use of a hypodiffusive governing equation (HDE) for the porous-
continuum modeling of gravity-driven fingers (GDF) as occur in initially dry, highly
nonlinear, and hysteretic porous media. In addition to the capillary and gravity terms
within the traditional Richards equation, the HDE contains a hypodiffusive term that
models an experimentally observed hold-back-pile-up (HBPU) effect and thus imparts
nonmonotonicity at the wetting front. In its dimensionless form the HDE contains the
dimensionless hypodiffusion number, NHD. As NHD increases, one-dimensional (1D)
numerical solutions transition from monotonic to nonmonotonic. Considering the
experimentally observed controls on GDF occurrence, as either the initial moisture content
and applied flux increase or the material nonlinearity decreases, solutions undergo the
required transition back to monotonic. Additional tests for horizontal imbibition and
capillary rise show the HDE to yield the required monotonic response but display sharper
fronts for NHD > 0. Finally, two-dimensional (2D) numerical solutions illustrate that in
parameter space where the 1D HDE yields nonmonotonicity, in 2D it forms nonmonotonic
GDF. INDEX TERMS: 1829 Hydrology: Groundwater hydrology; 1875 Hydrology: Unsaturated zone;

1866 Hydrology: Soil moisture; KEYWORDS: capillary hysteresis, wetting front instability, preferential flow,

extended irreversible thermodynamics, extended Darcy-Buckingham relations, hyperbolic and Navier-Stokes

flux equations
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1. Introduction

[2] Gravity-driven fingering has been of interest for many
years as a mechanism for preferential flow within the
vadose zone. Extensive experimental and theoretical study
(see the over 50 references listed by Eliassi and Glass
[2002]) has elucidated much about the phenomenon. Inter-
estingly, it has been found that individual gravity-driven
fingers (GDF) exhibit nonmonotonicity in both pressure and
saturation [Glass et al., 1989; Selker et al., 1992]. In
combination with capillary hysteresis, this nonmonotonic
behavior where finger tips are found to saturate (or nearly
so) and then drain a distance behind, has been used to
explain why fingers form a core and fringe zone structure
that persists in time and from one infiltration cycle to
another [Glass et al., 1989]. In fact, it has been noted that
from the time of initial finger formation onward, system
behavior is controlled primarily by hysteresis-induced het-
erogeneity [Glass and Nicholl, 1996]. However, the critical
behavior that is first required and from which the rest
unfolds is an ‘‘overpressurization’’ or ‘‘kick’’ at the wetting
front (WF) with a consequential ‘‘oversaturation.’’ This
behavior has yet to be explained in context of a porous-
continuum based unsaturated flow theory or included in

porous-continuum approaches for purposes of numerical
simulation.
[3] The incorporation of the ‘‘kick’’ in numerical model-

ing of GDF has been shown to be essential. Recent attempts
to numerically simulate GDF, using the traditional unsatu-
rated flow theory represented by the Richards equation (RE)
with standard monotonic hydraulic properties (i.e., hysteretic
pressure-saturation and permeability-saturation functions
[e.g., van Genuchten, 1980; Mualem, 1976]), required a
numerical artifact to give the appropriate ‘‘kick’’ [Eliassi and
Glass, 2001a]. In a set of artifact free simulations presented
there we showed that even when a significant perturbation is
imposed via a constant flux source the width of a finger at
the top of a two-dimensional (2D) domain, solutions of the
RE with standard monotonic properties (measured for mate-
rials that support GDF), yield a diffuse, monotonic plume
and not nonmonotonic GDF. Even with the imposition of the
traditional, highly nonlinear properties to create wetting
fronts in homogeneous materials, as long as the properties
remain monotonic, so do the solutions for constant flux
boundary conditions. Thus without the ‘‘kick’’, nonmono-
tonicity is not possible, diffusive behavior prevails, and GDF
does not occur.
[4] To consider the extension of the standard porous-

continuum approach to allow the modeling of GDF, in the
work of Eliassi and Glass [2002] we identified the ‘‘kick’’
at the WF with the experimentally observed hold-back-pile-
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up (HBPU) effect, where the hold back (HB) operates at the
forward edge of the WF to prevent overspreading from
capillary diffusion and the pile-up (PU) operates at the back
of the WF to increase the pressure and thus the saturation of
a finger tip. In combination with capillary hysteresis, the
HBPU effect should lead to a pressure reversal immediately
behind the WF to ultimately yield a nonmonotonic signature
such as found in GDF. We incorporated the HBPU effect as
an additional term within the porous-continuum governing
equation for flow through unsaturated media, thus extend-
ing the traditional RE. Because experimental data suggests
that the HBPU effect should be dependent on WF sharp-
ness, we modeled the HBPU to be a simple function of the
state variables (i.e., pressure and/or hysteretic moisture
content). By induction, we postulated the HBPU effect in
three different mathematical forms referred to as the hypo-
diffusive, Rhdiff (q), hyperbolic, Rhyper(q), and mixed, Rmix(q),
forms involving second and higher order spatial-temporal
derivatives of the hysteretic moisture content as:

Rhdiff qð Þ ¼ ~r � F qð Þ~rq yð Þ
h i

ð1Þ

Rhyper qð Þ ¼ � @

@t
T qð Þ @

@t
q yð Þ

� �
ð2Þ

Rmix qð Þ ¼ ~r � L qð Þ~r @

@t
q yð Þ

� �� �
ð3Þ

where ~r [L�1] is the gradient operator vector, q(y) [L3L�3]
is the hysteretic volumetric moisture content relation (i.e.,
the equation of state), y [L] is the capillary pressure head, t
[T] is time, and functions F(q) [L2T�1], T(q) [T], and L(q)
[L2] are new constitutive properties within each form of the
HBPU effect.
[5] As presented by Eliassi and Glass [2002], all three

formulations for R(q) above, and their associated flux
relations, have support in different extended theories for
single- and multiphase flow found in the literature. A
hypodiffusive flux relation can be distilled from the gener-
alized two-phase flow theory of Gray and Hassanizadeh
[1991] considering the concept of the Helmholtz free energy
of the water-phase as influenced by phase interfaces. Within
the context of extended irreversible thermodynamics, del
Rio and Lopez de Haro [1991] derive a hyperbolic flux
relation containing an inertial-like term with a relaxation
time function that imparts memory. Simplification of the
standard form of the Navier-Stokes equation also yields a
hyperbolic flux relation. Finally, using the dynamic capil-
lary pressure concept of Gray and Hassanizadeh [1991],
where the capillary pressure is comprised of both static and
time-dependent portions, a mixed-form flux can be derived.
[6] While the basic behavior of each form of R(q), given

in (1) to (3), can be verified analytically [Eliassi and Glass,
2002], numerical solution is required to consider whether
any of these forms can yield the appropriate nonmonoto-
nicity and GDF. Toward this end, the choice of which form
to include in an extended governing equation remains
arbitrary. As yet, none have been solved numerically to
serve as a guide, each has different and equally plausible
theoretical foundation, and all are formulated similarly to

depend on WF sharpness through spatial and temporal
derivatives of the state variable. In this paper, we consider
the numerical solution to a hypodiffusive governing equa-
tion (HDE) chosen simply because it does not contain
additional derivatives in time and thus does not require
special numerical techniques beyond those currently used to
solve RE. We focus on one-dimensional (1D) solutions as a
necessary first step given the highly nonlinear nature of the
HDE. Our results confirm that the HBPU as incorporated in
the HDE yields a nonmonotonic response that tracks exper-
imental trends in GDF behavior with variation of initial
moisture, applied flux, and material nonlinearity. Finally, we
illustrate that nonmonotonicity in 1D modeled with a HBPU
effect, indeed yields two-dimensional (2D) nonmonotonic
GDF.

2. Theory

[7] In the work of Eliassi and Glass [2002], we postu-
lated an extended hypodiffusive (HD) flux relation as an
alternative porous continuum-scale representation of the
flux in unsaturated porous materials. The HD flux is
composed of two parts, the first being the traditional
Darcy-Buckingham flux that includes capillary and gravi-
tational drives and the second being due to the HBPU effect.
The mathematical form of the hypodiffusive flux relation
can be stated as:

~q ¼ � K qð Þ ~ryþ 1
� �

þ F qð Þ~rq yð Þ
h i

ð4Þ

where~q [LT�1] is the flux vector,K(q) [LT�1] is the hydraulic
conductivity function, and F(q) [L2T�1] is the hypodiffu-
sion function. To yield the HBPU effect, the hypodiffu-
sion function must be such that as the WF is crossed,
F(q) � 0.
[8] Assuming the continuity equation retains its standard

form:

@

@t
q yð Þ ¼ �~r �~q ð5Þ

we can directly substitute (4) into (5) to obtain the
associated governing equation as:

@q yð Þ
@y

	 

@y
@t

¼~r � K qð Þ~ry
h i

þ d
@K qð Þ
@z

þ ~r � F qð Þ ~rq yð Þ
h i

ð6Þ

where the derivative of q(y) with respect to y is often
referred to as the water capacity function, d is a
dimensionless constant that allows us to flexibly study the
behavior of (6) under the influence of gravity (i.e., d = 1) as
well as when gravity is absent (i.e., d = 0), and z [L] is the
vertical direction. Here we refer to equation (6) as the
hypodiffusive governing equation (HDE) with the last term
on the right-hand side (RHS) of (6) being the hypodiffusive
term, or Rhdiff (q) in (1), where as F(q) ! 0, (6) reduces to
the standard form of the RE.
[9] As (6) indicates, we must provide functional relation-

ships for the hysteretic equation of state, q(y), constitutive
relation, K(q), and the hypodiffusion function, F(q). We
represent the normalized forms of q(y) and K(q), using the
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standard models of van Genuchten [1980] and Mualem
[1976], respectively, as:

� yð Þ 
 q yð Þ � qr
qs � qr

¼ 1þ a yj jð Þn½ 
�m ð7aÞ

k �ð Þ 
 K qð Þ
Ks

¼
ffiffiffiffiffiffiffiffiffiffiffi
� yð Þ

p
1� 1�� yð Þ1=m

� �mh i2
ð7bÞ

where �(y) refers to the hysteretic saturation function, qr
[L3L�3] and qs [L3L�3] are respectively the residual and
saturated (or satiated) moisture content values, a [L�1] is
the inverse capillary length, n defines the nonlinearity of the
porous media, m = 1� (1/n), k(�) is the normalized
hydraulic conductivity function, and Ks [LT�1] is the
saturated conductivity of the medium. For brevity, the
formulation we use for hysteresis in context of (7a) is
presented in section 2.1, after we have nondimensionalized
our equations.
[10] To consider the ability of the HDE to simulate

nonmonotonicity, the precise formulation of F(q) remains
arbitrary as long as F(q) � 0 as the WF is crossed. In
preliminary studies, we considered a variety of simple
functional forms of F(q) (e.g., monotonically decreasing,
monotonically increasing, convex and concave forms, as
well as constant), each giving qualitatively similar results.
However, Eliassi and Glass [2002] showed that a parallel
for the hypodiffusive flux can be found in the theory of
Hassanizadeh and Gray (HG) [e.g., Gray and Hassaniza-
deh,1991; Hassanizadeh and Gray, 1993a, 1993b]. While
we do not know yet if this theory properly accounts for the
underlying physics of the HBPU effect, we choose here to
loosely ground F(q) in the context of HG theory. Thus, as
future measurements of fundamental quantities within the
context of this theory are made, direct comparison to our
simulations will allow judgment as to its appropriateness to
model the HBPU. Eliassi and Glass [2002] found the HG
theory to suggest for F(q):

F qð Þ ¼ K qð Þ
g

	 

@Aw qð Þ
@q

ð8Þ

where g [LT�2] is the acceleration of gravity, and Aw(q)
[L2T�2] is the macroscopic Helmholtz free energy per unit
mass of the water phase as a function of water content [e.g.,
see Hassanizadeh and Gray, 1993a, 1993b]. To our
knowledge, the functional form of Aw(q) has yet to be
measured or parameterized for unsaturated materials. Here
we simply consider the following normalized form:

� �ð Þ 
 Aw qð Þ � Amin

Amax � Amin

¼ 1� � yð Þ½ 
b ð9Þ

where �(�) is the normalized free energy as a function of
saturation, Amax [L2/T2] and Amin [L2/T2] refer to the
minimum and maximum free energy values, respectively,
and b is a positive exponent we take as 0.1 representing a
mid range nonlinearity in (9). In (9), the free energy of
water is assumed greatest (i.e., Amax) at zero saturation, and
then monotonically decreases as the saturation increases to a
minimum (i.e., Amin) at full saturation (or satiation). This
behavior is consistent with the hypothesis of Hassanizadeh

and Gray [1993b], the primary physical basis for which is
the replacement of air-solid interfaces with water-solid
interfaces (heat of wetting). In addition, the functional form
of the free energy is likely to be hysteretic because on
drainage, a film of water is left behind on the solid in water
wettable media. In fact, we found in preliminary attempts
where �(�) is nonhysteretic, multiple nonmonotonicities,
or pulsation, can occur along the profile [Eliassi, 2001].
Such pulsation is common when a nonwetting fluid
displaces a wetting [e.g., Glass et al., 2000] but not for
wetting fluid invasion as we consider here. On the basis of
these results and the physical justification that a water film
is left behind on drainage, we simply assume that once a
reversal to drainage takes place, �(�) remains constant.

2.1. Dimensionless Forms of the HDE and
Constitutive Relations

[11] To simplify our studies, we nondimensionalize (6)
by introducing the following dimensionless variables: Y =
yaPWC, t = t(aPWCKs), ~r* ¼ ~r=aPWC , x = zaPWC, where
Y, t, ~r*, and x represent the dimensionless pressure
head, time, gradient operator, hydraulic conductivity func-
tion, and vertical position, respectively, and aPWC [L�1] is
the inverse capillary length of the primary wetting curve
(PWC). Following the substitution of these dimensionless
variables into (6) and using the form of hypodiffusion
function in (8), we have:

@� Yð Þ
@Y

	 

@Y
@t

¼ ~r* � k �ð Þ~r*Y
h i

þ d
@k �ð Þ
@x

þ NHD
~r*

� k �ð Þ @� �ð Þ
@�

	 

~r*� Yð Þ

� �
ð10Þ

where NHD is a new dimensionless group that we will call
the hypodiffusion number:

NHD ¼ aPWC

g
Amax � Aminð Þ ð11Þ

From (7) and (9) the dimensionless forms of the equation of
state, constitutive relations, and free energy, respectively,
are:

� Yð Þ ¼ 1þ a* Yj jð Þn½ 
�m ð12aÞ

k �ð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
� Yð Þ

p
1� 1�� Yð Þ1=m

� �mh i2
ð12bÞ

� �ð Þ ¼ 1� � Yð Þ½ 
b ð12cÞ

where a* = ac/aPWC is the dimensionless inverse capillary
length for a given hysteretic saturation branch c. We use the
variable aH* to define the maximum hysteresis loop size
given as the ratio of aMDC to aPWC, where aMDC [L�1] is the
inverse capillary length for the main drainage curve (MDC)
[see Eliassi and Glass, 2001a]. To illustrate the functional
variations of hysteretic �(Y) and k(�), Figures 1a and 1b,
respectively, show the typical bounding hysteresis loops and
permeability curves for n = 2 and n = 15, which represent the
bounding n values considered in this paper. Here we have
used (12a) with a* = 1 and a* = 0.5 (yielding aH* = 0.5) to
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evaluate�(y) for the PWCandMDC, respectively, and (12b)
is used to arrive at the nonhysteretic relative permeability
function, k(�) function. The functional form of �(�), using
(12c) with b = 0.1, and its comparison with k(�)j@�/@�j is
displayed in Figure 1c. Although at low or near zero
saturations, @�/@� yields large negative values (i.e., in the
limit, as � ! 0, @�/@� ! �1), the functional form of
k(�)j@�/@�j is controlled in this region by the relative
permeability function, k(�). However, as full saturation is
approached, @�/@� ! �b and thus k(�)j@�/@�j ! b.
[12] Finally, to predict the higher-order scanning hyster-

etic branches, we employ Scott’s model of hysteresis [Scott

et al., 1983]. Scott’s model is an empirical approach that
predicts the higher-order scanning (wetting or drying)
curves by simply scaling the bounding curves (i.e., PWC
and MDC within the context of present work). For instance,
the pressure-saturation function for a scanning drainage
curve (SDC) can be stated as:

�SDC Yð Þ ¼ �sd�MDC Yð Þ ð13aÞ

�sd ¼
�RW

�MDC YRWð Þ ð13bÞ

Figure 1. Standard monotonic properties as typically measured for unsaturated porous materials as well
as an assumed form of the free energy function. (a) Hysteretic pressure-saturation (i.e., equation of state)
relations for the primary wetting curve (PWC) and main drainage curve (MDC) for n = 2 that does not
normally display gravity-driven fingers (GDF) are compared to n = 15 curves, where GDF is typically
observed to occur. The pressure-saturation curves are developed using (12a) for dimensionless a* = 1 for
the PWC and a* = 0.5 for the MDC. Here we assume both the PWC and the MDC are scaled to have the
same maximum saturation value of 1 (i.e., we are not considering the effects of air and water entrapment
on the PWC and the MDC, respectively). (b) Relative permeability as a function of saturation (i.e.,
constitutive relation), which normally does not display a hysteretic response, is evaluated using (12b) for
n = 2 and n = 15 materials. (c) Functional response of the dimensionless free energy, �(�), evaluated
using (12c) for b = 0.1, is compared with the absolute value of the hypodiffusion function, k(�)j@�/@�j.
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where �SDC (Y) is the SDC as a function of pressure, Y,
�sd is the corresponding saturated (or satiated) value for the
SDC, �MDC (Y) describes the functional form of MDC
obtained from (12a) with a* = 0.5, and �RW and YRW,
respectively, are the reversal saturation and pressure on the
wetting branch issuing the new SDC. Similarly, to find the
functional form of a scanning wetting curve (SWC):

�SWC Yð Þ ¼ �rw þ 1��rwð Þ�BWC Yð Þ ð14aÞ

�rw ¼ �RD ��BWC YRDð Þ
1��BWC YRDð Þ ð14bÞ

where �SWC (Y) is SWC as a function of Y, �rw is the
corresponding residual saturation value for the new SWC,
�BWC (Y) describes the boundary wetting curve (BWC)
that here we consider to be PWC evaluated using (12a) with
a* = 1, and �RD and YRD refer to the reversal saturation
and pressure values on the drying branch where SWC is
issued from, respectively. We note that (13) and (14) are
stated for closed-loop hysteresis curves, i.e., the bounding
curves have the same residual and saturated (or satiated)
moisture contents, which within our dimensionless forms
are zero and one, respectively.

2.2. One-Dimensional Form of Initial Boundary
Value Problem

[13] In this paper, the majority of our analysis is focused
on the one-dimensional (1D) HDE (sections 3 and 4). The
1D Initial Boundary Value Problem (IBVP) is defined as
follows. From (10), we write the dimensionless 1D repre-
sentation of the HDE as:

@� Yð Þ
@Y

	 

@Y
@t

¼ @

@x
k �ð Þ @Y

@x

� �
þ d

@k �ð Þ
@x

þ NHD

@

@x

� k �ð Þ @�
@�

	 
�
@� Yð Þ
@x

�
ð15Þ

Assuming a uniform initial saturation of �i in the entire
domain, we define the initial condition as:

� x; 0ð Þ ¼ �i for � Z* � x � 0 ð16Þ

where Z* = aPWCZ is the dimensionless domain size in the
vertical direction and Z [L] signifies the domain’s physical
height. We also state the boundary conditions most
generally as:

b0 �k
@Y
@x

þ d
	 


þ NHD

@�

@�

	 

@�

@x

� �� �
Bi

þb1YjBi
¼ Fi ð17Þ

along the boundary Bi, where b0 and b1 are constants that
depending on the boundary condition type, can take on
values of either zero or one, Bi denotes the boundary
(e.g., top or bottom in the vertical sense or left and right
in the horizontal sense), and Fi represents the boundary
condition value [e.g., see Ozisik, 1980 p. 14]. In general,
(17) allows a greater flexibility to explore the HDE
numerical solution for both constant flux and prescribed
pressure boundary conditions. For instance, letting Bi

represent the top (surface) boundary, for b0 = 1, b1 = 0,
Fi = Rs, we have constant flux boundary conditions.
Similarly, for b0 = 0, b1 = 1, and Fi = yin, (17) becomes a
constant head or prescribed boundary condition. Here Rs =
qs/Ks is the dimensionless surface flux ratio and yin =
aPWCyin is a dimensionless prescribed pressure, with qs
[LT�1] and yin [L] being the surface flux and prescribed
pressure values, respectively. Similar conditions can also
be stated for the bottom boundary and/or when consider-
ing horizontal imbibition case (i.e., d = 0). For solutions
of the 2D IBVP (section 5.1), the 1D IBVP is
straightforwardly extended with uniform top and bottom
boundary conditions.

3. One-Dimensional Numerical Discretization
and Solution Approach

[14] To discretize and solve the 1D IBVP, (15) to (17), we
employ a fully implicit cell-centered finite difference ap-
proach, similar to that discussed by Eliassi and Glass
[2001a]. Using a first-order backward Euler to evaluate
the temporal derivative and only considering constant grid
spacing, we can write the discretized form of (15) as:

1

�tnþ1

@�

@Y

	 
nþ1

j

Ynþ1
j � 1

�x2
knþ1
jþ1=2 Ynþ1

jþ1 �Ynþ1
j

� �
� knþ1

j�1=2

h

� Ynþ1
j �Ynþ1

j�1

� �i
¼ rnþ1

j ð18aÞ

where �tn+1 is the current time step size, subscript j refers
to the nodal points in x direction, superscript n + 1 is the
index for the current time step, �x is the dimensionless
uniform grid spacing, and kj±1/2n+1 are the average k values
across two connected nodes. rj

n+1 has the following form:

rnþ1
j ¼ 1

�tnþ1

@�

@Y

	 
nþ1

j

Yn
j þ

d
�x

knþ1
jþ1=2 � knþ1

j�1=2

h i

þNHD

1

�x2
k
@�

@�

	 
nþ1

jþ1=2

�nþ1
jþ1 ��nþ1

j

� �"

� k
@�

@�

	 
nþ1

j�1=2

�nþ1
j ��nþ1

j�1

� ��
þ b0

Rs

�x
þ b1Yin

� �
Bi

ð18bÞ

where superscript n is the previous time step index and the
last group of terms on the RHS of (18b) refers to the
boundary conditions. When considering flux boundary
conditions (i.e., b0 = 1 and b1 = 0), the index j extends
over, 0 � j � J + 1 ( j = 0 and j = J + 1 refer to the mesh
indices for the two boundaries). However, when we have a
prescribed top boundary condition (e.g., at j = 0), in (18b)
b0 = 0 and b1 = 1 and 1 � j � J + 1. A similar procedure
is used if a prescribed pressure is at j = J + 1 , e.g.,
capillary rise in a vertical domain and/or considering
horizontal imbibition, where d = 0.
[15] At the start of each time step, we calculate the time

step size, �tn+1, using:

�tnþ1 ¼ min l�tnþ1;�tCFL;ð �tHD;�tmaxÞ ð19aÞ
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where l = 1.1 is a time step growth factor, �tn, �tCFL,
�tHD, and �tmax refer to the previous, advective,
hypodiffusive, and maximum time step sizes, respectively,
with �tmax = 10�3. We also define �tCFL and �tHD,
respectively as:

�tCFL ¼ nCFL
�x
vmaxj j ð19bÞ

�tHD ¼ nHD
�x2

NHD k @�=@�j jð Þmax
ð19cÞ

where nCFL = 0.1 and nHD = 0.5 are the safety factors
that limit the sizes of �tCFL and �tHD, respectively,
vmax is the maximum dimensionless velocity (i.e., ratio of
flux to saturation), and the denominator in (19c) refers to
the maximum (positive) value of the hypodiffusion
function.
[16] To evaluate the internodal averages, i.e., the coef-

ficients that include subscripts, j ± 1/2, we considered the
first-order upwind (UW1) and the second-order centered
difference (CD2) averaging methods. In general diffusive
applications, UW1 does not generate spurious oscillations
and always yields physically relevant solutions [e.g., see
Forsyth and Kropinski, 1997], even though its leading
truncation error (LTE) causes an artificial diffusion of the
WF. For small enough�x values, CD2 generally results in a
smaller LTE and resolves sharp fronts better without the
artificial diffusion found in UW1 or oscillations generated
by higher-order methods [e.g., Eliassi and Glass, 2001a].
The formulation for both the UW1 and CD2 averaging
methods can be generally stated as [Eliassi and Glass,
2001a]:

gnþ1
jþ1=2 ¼

1

2
1þ wsjþ1=2

� �
gnþ1
j

h
þ 1� wsjþ1=2

� �
gnþ1
jþ1

i
ð20aÞ

where g refers to the variable to be averaged, w is a
weighting parameter, and sj + 1/2 determines the sign of the
difference in g between two adjacent nodes as:

sjþ1=2 ¼ sgn gnþ1
j � gnþ1

jþ1

� �
¼

1 if gnþ1
j � gnþ1

jþ1

� �
� 0

�1 if gnþ1
j � gnþ1

jþ1

� �
< 0

8><
>:

ð20bÞ

When considering the CD2 method, w = 0, and we only need
to use (20a). However, for the UW1 method, we let w = 1.
[17] To linearize the system of nonlinear algebraic equa-

tions, resulting from (18a) and (18b), we first considered the
modified Picard iteration (MPI) approach [e.g., Celia et al.,
1990]. However, in a number of preliminary solutions of the
HDE, we found the MPI method often would result in
convergence problems and severe time step reduction [see
Eliassi, 2001]. For this reason, we chose the one-step
noniterative linearization (OSNL) approach [e.g., Haver-
kamp et al., 1977], which yielded a global mass balance
error on the order of 0.1% or smaller for all solutions
reported in this paper. In the OSNL approach, we simply
evaluate the various nonlinear variables using the informa-
tion from the previous time cycle, n. We can then write the

following compact form, for the system of linear equations
to be solved at each time step:

D Ynð Þ½ 
 Ynþ1
� �

¼ r Ynð Þf g ð21Þ

where [D(Yn)] is the linear coefficients matrix, which is
evaluated using the known vector {Yn}, {Yn+1} represents
the unknown pressure vector, and {r(Yn)} is the RHS vector
in (18b) which is also evaluated using {Yn} values. To
arrive at the unknown pressure values, {Yn+1}, at each time
step for 1D cases, we use the Thomas algorithm to directly
solve the system of linear equation [e.g., Anderson et al.,
1984, p. 128].
[18] Following matrix inversion, we assess the hysteretic

state of each node by checking the changes in the nodal
pressures from the previous time step (i.e., �Yj

n+1 = Yj
n+1

� Yj). If at node, j, the sign of �Yj
n+1 has changed and

j�Yj
n+1j > eH, that node is placed on a new hysteretic

branch and (13) or (14) are used to update the hysteretic
equation of state, �(Y). Here eH is the dimensionless
reversal threshold and is set to a small number, where eH =
10�8. We choose a small eH value, as it allows for all
reversals to naturally occur and the reversal criterion is not
tied to any other property of the �(Y) (e.g., a or the inverse
capillary rise). Once �(Y) has been updated, we also update
@�(Y)/@Y, k(�), and �(�) for the current time and
advance to the next time cycle.

3.1. Sensitivity to Grid Resolution and Averaging
Methods

[19] To illustrate the basic response of the HDE numerical
solution as well as its sensitivity to the grid spacing, �x, we
first present the solution where NHD = 5. We consider a
vertically oriented domain (i.e., d = 1) with Z* = �20, under
an initially dry condition (�i = 10�10), and highly nonlinear
porous medium (nPWC = 15), where the top boundary is
subject to a constant flux of Rs = 0.1, and the bottom
boundary has a zero flux condition. Other related physical
and numerical parameters are listed in Table 1 under the
baseline case. Figure 2 depicts the saturation and pressure
profiles using the CD2 (Figures 2a and 2b) and UW1
(Figures 2c and 2d) averaging methods for grid spacings
of �x = 0.08, 0.04, 0.02, and 0.01. For both averaging
methods the solution is nonmonotonic with both the satura-
tion and pressure rising as the WF is approached and then
dropping further behind where they eventually take on an
asymptotic value.While for all�x values theCD2 (Figure 2a)
method yields a fully saturated finger tip, for the UW1
(Figure 2c) the finger becomes fully saturated only as the
�x decreases. We note that contrary to what we have found
for the RE where nonmonotonic solutions caused by
numerical artifacts become monotonic as the grid is refined
[Eliassi and Glass, 2001a], the nonmonotonicity in the
HDE solution enhances as the grid is refined.

3.2. Evaluation of Truncation Errors

[20] To understand the response of the HDE solution as a
function of grid spacing and averaging method, we can
consider the LTE of each averaging method, and evaluate
the corresponding ‘‘modified governing equation’’ (MGE)
for the HDE. Eliassi and Glass [2001a] derived the MGE
for the RE numerical solution (i.e., the equation that is
actually being solved during the numerical solution steps).
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Using a similar approach, we can write the MGE for the 1D
form of the HDE as:

@�

@Y

	 

@Y
@t

� @

@x
k

@Y
@x

	 
� �
� d

@k
@x

� NHD

@

@x
k
@�

@�

	 

@�

@x

� �

¼ � ET þ EC þ EG þ EHDð Þ ð22Þ

where the left-hand side is the 1D form of the HDE stated in
(15) and the RHS refers to the LTE for the temporal, ET,
capillary, EC, gravity, EG, and hypodiffusive, EHD, terms.
Here we simply neglect ET, since we have found the
temporal term’s LTE, in general, to be much smaller than
the LTE for the spatial terms [see also Eliassi and Glass,
2001a]. For the CD2 averaging method, the LTE for the
three spatial terms can be stated as:

EC þ EG þ EHD ¼ �x2
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and for the UW1 averaging method, they become:

EC þ EG þ EHD ¼ �x
2

	 

@
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ð23bÞ

In (23a) and (23b), the first, second, and third terms
correspond to EC, EG, and EHD LTE, respectively.
[21] Figure 3 compares the variation in the total spatial

LTE (i.e., the RHS of (22) disregarding ET) with that of the
hypodiffusive term, for the smallest grid spacing considered
(i.e., �x = 0.01). Here we focus our examination near the
WF where the pressure and saturation gradients are greatest.
To evaluate the various terms (i.e., the LTE and/or the
hypodiffusive term), we use the computed results at the
given time along with the same finite difference approach
used to discretize the various terms within the HDE. We see
that the hypodiffusive term has the required negative min-
imum (i.e., hold-back) and positive maximum (i.e., pile-up)
as the WF is crossed. We also find the total spatial LTE
generally to have a similar behavior as the hypodiffusive
term; thus it slightly enhances the HBPU effect. However,
for �x = 0.01 the LTE magnitudes are much less than the
size of the hypodiffusive term and thus do not dominate the
numerical solution and/or the response of the HDE. Addi-
tionally, relative to the hypodiffusive term, we note that the

Table 1. Dimensionless Physical and Numerical Parameters for 1D Solutions

Parameter Value

Parameters for baseline casea

Material nonlinearity for PWC, nPWC 15
Material nonlinearity for MDC, nMDC 15
Inverse capillary pressure, aH* = aMDC*/aPWC* 0.5 (hysteretic)
Hysteretic reversal criterion, eH 10�8

Domain height, Z* 20
Initial saturation, �i 10�10

Applied flux ratio, Rs 0.1
Flow direction, d 1 (vertical)
Free energy function exponent, b 0.1
Hypodiffusion number, NHD 2
Maximum solution time, tmax 60
Spatial grid spacing, �x 0.01
Averaging method CD2
Linearization scheme OSNL

Parameters for section 3.1 (Figure 2): Effects of grid resolution and averaging methods
Spatial grid spacing, �x 0.08, 0.04, 0.02, 0.01
Averaging method CD2, UW1
Hypodiffusion number, NHD 5

Parameters for section 4.1 (Figure 4): Effect of hypodiffusion number
Hypodiffusion number, NHD 0, 0.2, 1, 2, 5, 10, 15, 20

Parameters for section 4.2 (Figure 7): Effect of initial saturation
Initial saturation, �i 10�10, 10�5, 10�4, 10�3, 10�2

Parameters for section 4.3 (Figure 8): Effect of applied flux ratio
Initial saturation, Rs 10�4, 10�3, 0.01, 0.1, 0.4, 0.5, 0.75, 0.9, 1
Corresponding tmax 6000, 2250, 400, 60, 15, 12, 8, 6.5, 6

Parameters for section 4.4 (Figure 9): Effect of media nonlinearity
Material nonlinearity for PWC, nPWC 2, 3, 5, 9, 11, 15 (note we let nMDC = nPWC)

Parameters for section 4.5: Effects of horizontal imbibition and capillary rise
Horizontal imbibition (Figure 10)
Flow direction, d 0
Applied flux ratio, Rs 0.1
Prescribed pressure boundary condition (BC), Yin �0.25

Capillary rise (Figure 11)
Surface (top) BC, Rs 0
Bottom BC, Yin 0

aUnless otherwise stated, all parameters for subsequent sections are the same as the baseline case.
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LTE for the CD2 (Figure 3a) solution is noticeably smaller
than that of UW1 (Figure 3b).
[22] While (23a) and (23b) show the LTE to decrease

with grid refinement, because the hypodiffusive term itself
is a ‘‘self-sharpener,’’ it is possible that such refinement
could cause the hypodiffusive term to overwhelm the
solution and cause pressures to become unbounded. To
consider this possible effect, we conducted a simulation
for NHD = 2 where the grid spacing was further reduced by
an order of magnitude (i.e., �x = 0.001). Solutions yielded
peak pressure values at the WF that were quite comparable
(e.g., �0.94 for �x = 0.01 versus �0.96 for �x = 0.001).
While not an exhaustive proof, this ‘‘taming’’ of the
hypodiffusive term must occur through feedback within
the HDE from the stabilizing capillary term, and thus, as
we continue to refine the grid, pressure appears to remain
bounded. Of course, increasing NHD itself beyond a thresh-

old value (�30 for CD2) can indeed result in unbounded
pressures.

4. One-Dimensional Numerical Illustrations
Using HDE

[23] Here we first examine the 1D numerical response of
the HDE with respect to NHD. Then for a single value of
NHD, we consider solution behavior as a function of the
critical physical parameters that control GDF which, as
discussed by Glass and Nicholl [1996], include the initial
moisture content, �i, the flux ratio, Rs, the media nonlin-
earity, nPWC, and of course flow direction, d (i.e., vertical
downward, vertical upward, and horizontal). The various
physical and numerical parameters for all the illustrations
are summarized in Table 1. A full set of solutions was
conducted for both the UW1 and CD2 methods. However,

Figure 2. Saturation and pressure profiles, obtained using numerical solution of the hypodiffusive
governing equation, illustrate the influences of grid spacing, �x, and averaging method for a
hypodiffusion number of NHD = 5. For the CD2 averaging method: (a) saturation profiles are nearly
identical as �x reduces but with slight variations in the WF position for different �x values; (b) pressure
profiles show slight variations in the peak pressure at the WF. For the UW1 averaging method: (c) finger
tip saturation increases as �x reduces; (d) pressure profiles show the WF sharpens as smaller �x are
used, with little variation in the peak pressure among the various profiles.
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for the sake of brevity, and because of the reduced trunca-
tion error demonstrated for the CD2 averaging method, as
well as the fact that CD2 resolves the WF more sharply than
UW1, we present results primarily for CD2 below.

4.1. Effect of Hypodiffusion Number on the HDE
Solution

[24] As shown in Figure 4, over the range of NHD values
listed in Table 1, the saturation and pressure profiles
transition from monotonic for NHD � 1, where they all
are nearly identical to that of the standard RE (i.e., when
NHD = 0), to nonmonotonic for NHD � 2. The solution for

the NHD = 2 is quite similar to the NHD = 5 (previously
shown in Figure 2c). That is, the 1D ‘‘finger tip’’ is fully
saturated and drains behind to an asymptotic value. The
peak pressure for NHD = 2 is barely greater than the
monotonic solution (i.e., NHD � 1) (see Figure 4b). This
small difference in pressure is due to the extra ‘‘kick’’ that
the hypodiffusion term provides at the WF to create non-
monotonic profiles. For NHD � 10, while the finger tip is
also fully saturated, the profile overdrains behind the WF
and then approaches an asymptotic saturation from below.
Additionally, the WF positions for NHD = 15 and 20 do not
advance as far into the domain and have longer saturated

Figure 4. Effect of hypodiffusion number, NHD, on the numerical solution of HDE for the �x = 0.01
case in Figure 2a: (a) saturation profiles show there is a transition from monotonic to nonmonotonic
responses as NHD increases, but larger NHD values oversharpen and slow down the wetting front
advancement, and (b) pressure profiles show the peak pressure increases as a function of NHD and when
NHD = 20 the solution yields positive pressures, which is unphysical for water wettable materials.

Figure 3. Functional behaviors of the hypodiffusive term and the total spatial leading truncation error
(right-hand vertical axis) are shown near the wetting front along with the saturation profile (left-hand
vertical axis) for the solutions with �x = 0.01 presented in Figure 2: (a) for the CD2 averaging method
and (b) for the UW1 averaging method.
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finger tips than those for NHD � 10. Considering the
pressure profiles (Figure 4b), for NHD � 1 the peak pressure
value (i.e., the pressure at the WF) continually increases,
until for NHD = 20, the peak pressure is positive. For water
wettable porous materials, pressures should always remain
in tension, and thus large NHD values may not be physically
relevant to our problem.
[25] To better understand the behavior of the HDE, we

evaluate the response of the gravity, capillary, and hypo-
diffusive terms as we cross the WF. In Figure 5 we plot each
term along with the saturation profile for NHD = 2. The
magnitudes of the capillary and hypodiffusive terms are both
seen to be much greater than that of the gravity term.
Additionally, the capillary term’s profile is the mirror image
of the hypodiffusive (i.e., there is a positive maximum ahead
of the WF and a negative minimum behind the WF) and of
nearly equal but opposite magnitude. Thus the capillary and
hypodiffusive terms are in direct and nearly equal competi-
tion. Analyzing the profiles in Figure 4, we find for NHD > 2,
the capillary and hypodiffusive term magnitudes increase
with NHD, but at the front edge of the WF (first swing on
Figure 5 where the maximum absolute value of each term is
found) the capillary term always slightly out competes the
hypodiffusive for the range of NHD considered (Figure 6).
For NHD � 2, the relative importance of the hypodiffusive
term decreases, eventually yielding a monotonic solution.
On the basis of this behavior we choose a value of NHD = 2 in
subsequent simulations to consider the critical physical
parameters that control GDF (sections 4.2–4.5).

4.2. Effect of Initial Saturation

[26] Saturation profiles for the NHD = 2 case using a range
of initial saturation, 10�10 � �i � 0.01 (Table 1), are shown

in Figure 7. Over the range 10�10 � �i � 10�4 the solutions
are nearly identical and for �i � 10�3, while the finger tip
saturation is the same as the cases with lower �i, by mass
balance the profile moves slightly further into the domain.
As the initial saturation increases to �i = 0.01, the profiles
become monotonic. This trend toward monotonicity with
increasing initial saturation is consistent with previous
experimental observations of GDF. For instance, Diment
and Watson [1985] found that as the uniformly distributed
initial saturation increases, GDF becomes less distinct.
Additionally, Glass and Nicholl [1996] demonstrated that

Figure 6. Positive maximum and the absolute value of the
negative minimum of the competing parts of the capillary
and hypodiffusive terms versus NHD for the solutions in
Figure 4. As NHD increases, the magnitude of each term also
grows; however, the hypodiffusive term is never larger than
the capillary term for the range of NHD values shown.

Figure 7. Saturation profiles for NHD = 2 illustrating the
effect of initial saturation, �i, on the numerical solution of
the HDE. The various profiles show that as �i increases, the
solution becomes monotonic.

Figure 5. Local behaviors of the spatial terms in the
hypodiffusive governing equation (left-hand vertical axis)
are plotted along with the saturation profiles (right-hand
vertical axis) near the wetting front for the baseline case
(i.e., NHD = 2) shown in Figure 4. The capillary and the
hypodiffusive terms have nearly equal but opposite
behaviors. Note that compared to the two other spatial
terms, the gravity term is of much smaller magnitude.
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if sand where GDF occurs under dry conditions is pre-
wetted to a uniformly drained ‘‘field capacity,’’ a diffuse
bulb instead of GDF forms from a point source. Formation
of diffuse wetting fronts in initially moist sands that support
GDF when dry, have also been reported by other inves-
tigators [e.g., Liu et al., 1994; Sililo and Tellam, 2000].

4.3. Effect of Applied Flux Ratio

[27] Figure 8 displays saturation profiles for NHD = 2 as a
function of applied flux ratio, Rs, for the range 10

�4 � Rs �
1 (Table 1). For 0.1 � Rs � 1, the solution time for each
profile is chosen such as to have roughly the same mass
within the domain. However, for Rs � 10�2, finger tips
would have extended beyond our problem domain and so
these solutions are given before they reach the bottom
boundary (see Table 1 for corresponding solution times).
We see that, as Rs approaches a value of 1, the saturated tip
length increases and the profiles trend toward monotonicity.
In particular, for Rs = 1 (not shown in figure) the entire zone
behind the WF is fully saturated. At the low flow extreme,
we also see a trend toward monotonicity where for Rs =
10�4, the profile is nearly monotonic.
[28] Experimental studies of GDF by Glass et al. [1989],

found a simple relation for finger tip length, Ls, as a
function of the flux through the finger Rf, as:

Ls ¼
ywe � yae

1� Rf

ð24Þ

where the numerator, ywe � yae, signifies the difference
between the water and air-entry pressures of the sand.
Taking Rf to be analogous to Rs, in the limit as Rf goes to 1,
the saturated tip length becomes infinite and, as Rf

approaches zero, Ls simply becomes the size of the
hysteresis loop (i.e., within the context of our dimensionless
variables, Ls ! 1 as Rf becomes small). This behavior is
qualitatively consistent with our current solutions for Rs at
10�3 and above. For very low Rs, Yao and Hendrickx [1996]
have found more recently that quartz and perlite sands
produced stable wetting fronts at Rs � 10�4. Once again,
our solutions also show this trend although the profile for
Rs = 10�4 is still not quite monotonic.

4.4. Effect of Material Nonlinearity

[29] Material nonlinearity, nPWC, is another critical pa-
rameter that controls the occurrence of GDF. Saturation
profiles shown in Figure 9, for the range 2 � nPWC � 15
(see Table 1), using NHD = 2, demonstrate a transition from
monotonic to nonmonotonic response when nPWC is above
9. When nPWC = 9 the WF becomes quite sharp and for
nPWC = 11 the finger tip saturation is �0.7, while for the
baseline case (i.e., nPWC = 15) a fully saturated finger tip
forms. The transition from monotonic to nonmonotonic
response conforms to experimental observations where
GDF forms in materials with large nPWC (e.g., sands), while
GDF has not been observed in materials with small nPWC

(e.g., soils).

4.5. Horizontal Imbibition and Capillary Rise

[30] Finally, to demonstrate that the HDE complies with
traditional understanding of flow through unsaturated
porous materials, we consider two situations where mono-
tonicity must always occur and GDF will not. The first is

horizontal imbibition under both constant flux and constant
pressure boundary conditions (where gravity is absent) and
the second is capillary rise under a constant pressure
boundary condition (where gravity acts to stabilize the
flow). Figure 10 shows saturation profiles in the absence
of the gravity, for the boundary conditions listed in Table 1.
Comparing solutions for NHD = 0 and NHD = 2, under both
Rs and Yin type boundary conditions, we see that for both
constant flux and prescribed pressure, the WF is fully
saturated and all profiles are monotonic. However, the
solutions for NHD = 2 yield a much sharper WF than the
NHD = 0 cases. We also note that although all four profiles
are at the same tmax = 60, the solutions for the yin boundary
condition flow further into the domain as one would expect
for unconstrained flux.
[31] To examine the HDE solution behavior for capillary

rise, we use our baseline model and apply a prescribed
pressure of Yin = 0 at the bottom boundary and a zero flux
condition to the top boundary (Table 1). Figure 11 shows
the saturation profiles near the WF for NHD = 0 and NHD = 2
at the end of imbibition (i.e., at a time of tmax = 30). The
saturation profile for the standard RE (i.e., NHD = 0)
approaches that of the equation of state (i.e., pressure-
saturation curves), while for NHD = 2, the profile is a bit
sharper. We note that if one was to perform a capillary rise
experiment and obtained a profile such as we have simu-
lated with NHD = 2, then use the equilibrium assumption
based on the RE alone to derive the pressure-saturation
relation for the medium, the n value would be significantly
higher (e.g., n � 45). Obviously, a capillary rise simulation
with RE using n � 45 will yield a profile that is near to that

Figure 8. Saturation profiles for NHD = 2 illustrating the
effect of applied flux ratio, Rs, on the numerical solution of
the HDE. While for Rs = 0.9, the solution is nearly
monotonic and fully saturated, for the range 10�3 � Rs �
0.75, the solution displays a nonmonotonic response, and
finally for Rs = 10�4, there is a transition back to
monotonicity. With the exceptions of Rs = 10�4, 10�3,
and 10�2, the time for each profile is chosen so that there
are roughly equal masses in the profile (see Table 1).
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obtained by the HDE with NHD = 2. However, we note that
solution of vertically downward flow (i.e., our baseline
case) will be quite different with the RE (and n � 45) and
HDE (and n = 15, NHD = 2) yielding monotonic and
nonmonotonic profiles, respectively.

5. Extensions

[32] The 1D analysis presented in sections 3 and 4
demonstrates that the HBPU effect, as modeled with the
HD term, yields nonmonotonicity as a function of hypo-
diffusion number, NHD, and also has the correct qualitative
behavior with respect to physical parameters that limit GDF
occurrence (i.e., initial dryness, applied flux ratio, material
properties, and flow direction). Here we now demonstrate
that this nonmonotonic behavior arising in the 1D solution
indeed yields GDF in 2D (section 5.1). We then focus on the
HBPU hypothesis presented by Eliassi and Glass [2002]
and discuss nonmonotonicity and alternative forms of the
HBPU effect (section 5.2). In particular, we show that the
basic form of the HDE can be transformed to incorporate
the HBPU effect into both modified constitutive relations
and/or equations of state, both of which become nonmono-
tonic and thus can yield nonmonotonic solutions.
5.1. Two-Dimensional Simulations of GDF

[33] Our premise in the works of Eliassi and Glass
[2001a, 2002] and throughout this paper has been that for
a porous continuum approach to model GDF, nonmonoto-
nicity must arise naturally from within the governing
equation. Thus showing nonmonotonicity in the 1D solution
implies that GDF will form in 2D. To illustrate this, we
consider solutions of the 2D HDE. We simply extend our
baseline 1D problem to be H* = 5 units wide and implement
zero flux boundary conditions to the left (h = 0), right
(h = H*), and bottom (x = �Z*) boundaries, where h and

H*, respectively denote the dimensionless horizontal direc-
tion and domain width. Similar to the baseline 1D cases, we
choose the porous medium to be comprised of highly
nonlinear material with nPWC = 15, an initially uniform
saturation of �i = 10�10, and assume water is supplied
across the entire top boundary (i.e., x = 0) at a constant and
uniform flux of Rs = 0.1. Our 2D numerical solution
approach is identical to that for 1D (section 3), except that
we extend the finite difference discretization and CD2
averaging to the second dimension (i.e., h direction), and
use an iterative solver to invert the resulting linear system of
equations (for details, see Eliassi and Glass [2001a]).
[34] Figure 12 shows portions of the 2D solutions results

for NHD = 0 (i.e., the solution to the standard RE) and for
NHD = 2, along with an experimental saturation field from
Glass et al. [1989]. Both experiment and numerical solutions
are shown at the same scale in Figure 12 (see caption).
Comparison of the two numerical solutions clearly shows
that for the RE case (i.e., NHD = 0) the WF is uniform and the
solution is monotonic, while GDF forms for NHD = 2.
Additional solutions verify that the transition from mono-
tonic to nonmonotonic in 1D is mirrored by monotonic to
nonmonotonic GDF in 2D. Comparing the fields for the
NHD = 2 case and the experiment, we see many of the same
qualitative features. Both show the field to rapidly break
into fingers, fingers to merge, and a small number of strong
fingers to dominate. We also see some differences such as
the fact that the fingers in the experiment tend to meander
more and have a more heterogeneous saturation structure.
While the experimental flux was near to that in our
numerical solution, it was not reported by Glass et al.
[1989], and thus we cannot expect to match quantitative
measures of finger velocities, widths, and saturated tip
lengths exactly. Nevertheless, comparisons of the simulated
and experimental results show that both average finger
velocities and finger widths are within 20%, while saturated

Figure 9. Saturation profiles for NHD = 2 illustrating the
effect of material nonlinearity, nPWC, on the numerical
solution of the HDE. While for 2 � nPWC � 9, the profiles
are monotonic (with the nPWC = 9 solution displaying a
sharp wetting front), there is a transition to nonmonotonicity
between nPWC of 9 and 11.

Figure 10. Saturation profiles for horizontal imbibition
subject to either a constant flux (Rs = 0.1) or prescribed
pressure (Yin = �0.25). While for both types of boundary
conditions the solution remains monotonic, the solution for
NHD = 2 (i.e., with the HDE) yields a sharper WF than those
of the standard RE solution (i.e., NHD = 0).

SBH 12 - 12 ELIASSI AND GLASS: SIMULATION OF GRAVITY-DRIVEN FINGERS



finger tip lengths are within 25%. Thus a value of NHD just
above the value where a nonmonotonic response arises in
1D, yields 2D GDF with behavior representative of that
found in experiment.

5.2. Nonmonotonicity and Alternative Forms of the
HBPU Effect

[35] In this paper and in the work of Eliassi and Glass
[2002] we have argued that the porous-continuum scale
representation of the physics for unsaturated flow must
contain a macroscopic HBPU effect to be able to model
GDF. As stated by Eliassi and Glass [2002], there are a
variety of ways to include and mathematically formulate
such a HBPU effect. We have focused on approaches that
incorporate an additional term in the governing equation.
There and in section 1 of this paper, we outlined three
possibilities resulting in the HD, hyperbolic and mixed form
terms. In this paper we chose to illustrate the HBPU
behavior using the HDE, as the HDE did not require any
special numerical techniques for its solution. While not
presented here, numerical solutions using the hyperbolic
form of the HBPU effect also show, similar to the HDE, the
required behavior for the porous-continuum simulation of
GDF. This is expected because the formulation of the
HBPU within the HD and hyperbolic are similar, both
include an additional term containing a second derivative
(in space for HDE and in time for the hyperbolic). However,
our numerical solutions using the mixed form, as formulated
in the context of the dynamic capillary pressure of Hassa-
nizadeh and Gray [1993a, 1993b], have not yet been shown
to yield nonmonotonicity. Indeed, in the work of Eliassi and
Glass [2002], we could not argue conclusively for a non-
monotonic behavior with the mixed form because it has a
spatial-temporal third-order derivative that introduces an
additional non-HBPU ‘‘swing’’ across the WF.

[36] As noted by Eliassi and Glass [2001a, 2002], non-
monotonicity can also be created through the use of non-
standard constitutive relations or equations of state. Of
course, such approaches simply incorporate the same mac-
roscopic HBPU effect in yet another way. We can illustrate
this transformation of the HBPU with straightforward
manipulation of the HDE. First, to consider a nonstandard
constitutive relation, we can rewrite (10) as:

@� Yð Þ
@Y

	 

@Y
@t

¼ ~r* � ~k �ð Þ~r*Y
h i

þ d
@k �ð Þ
@x

ð25aÞ

where (25a) is near to the standard form of the RE, except
~k �ð Þ can be thought of as a ‘‘modified permeability
function’’ having the form:

~k �ð Þ ¼ k �ð Þ 1þ NHD

@�

@�

@�

@Y

� �
ð25bÞ

Functional variation of ~k �ð Þ versus saturation is shown
Figure 13a, for the same set of NHD values as in Figure 4
(with n = 15, a* = 1, and b = 0.1). Note that for NHD = 1
and smaller, ~k �ð Þ is always positive and varies near to the
standard form of permeability function (i.e., NHD = 0 curve).
However, for NHD = 2 and larger, ~k �ð Þ becomes
nonmonotonic to yield negative values before becoming
positive at higher saturation. The functional response of
~k �ð Þ with respect to the media nonlinearity, n, for the same
values as in Figure 9 (with a* = 1, NHD = 2, and b = 0.1) are
shown in Figure 13b. While for n = 2 to 9, ~k �ð Þ is
monotonic and is near to standard k(�), for n = 11 and
above, ~k �ð Þ is nonmonotonic having a minimum value that
is negative. Comparing the presence of nonmonotonicity in
~k �ð Þ to that found in saturation profiles (Figures 4 and 9),
we see a direct correspondence. While negative perme-
ability values are clearly difficult to conceive, ~k �ð Þ no
longer has the same physical meaning as the standard
permeability function, especially as NHD increases. How-
ever, the ability of ~k �ð Þ to model nonmonotonic profiles
suggests that the standard Darcy flux relation with a
nonmonotonic permeability function applied to both
capillary and gravity terms, may yield nonmonotonic
solutions.
[37] Alternatively, to consider a nonstandard equation of

state, we can rewrite (10) as:

@� �ð Þ
@�

	 

@�

@t
¼ ~r* � k �ð Þ~r*�

h i
þ d

@k �ð Þ
@x

ð26aÞ

where (26a) is again near to the standard form of the RE,
except �(�) is a ‘‘modified total potential’’ given by:

� ¼ � �ð Þ ¼ Y �ð Þ þ NHD� �ð Þ ð26bÞ

As (26b) indicates, the modified total potential is comprised
of two parts, the first given by the standard equation of state
(i.e., Y(�)) and a second that within the context of the
theory of Hassanizadeh and Gray [1993a, 1993b], arises
from the heat of wetting or the Helmholtz free energy.
Figure 14a shows � as a function of � for the same NHD

values as in Figure 4a (with n = 15, a* = 1, and b = 0.1).
While for NHD < 1, �(�) is a monotonic function of �, as

Figure 11. Close-up view of saturation profiles for
capillary rise in a vertical domain, subject to constant
bottom prescribed pressure, Yin = 0 at x = �20. As
expected, the wetting front maintains its monotonicity for
NHD = 2. However, compared to the NHD = 0 case (i.e., the
RE solution), the HDE solution with NHD = 2 yields a
sharper WF.
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Figure 12. Portions of the saturation fields for the 2D numerical solutions, using the RE and HDE, are
compared with experiment. (a) For NHD = 0 (i.e., the standard form of the RE) a uniform and monotonic
WF advances into the 2D domain. (b) For NHD = 2 the WF breaks up into nonmonotonic GDF.
(c) Experimental GDF from Glass et al. [1989]. Both numerical solutions (5 by 14.2 dimensionless units)
and experiment (8.3 by 14.2 dimensionless units) are shown at the same scale. Dimensionless solution
time for both NHD = 0 and 2 is t = 30, which was chosen for comparison with the experiment. Numerical
solutions used constant grid spacing of �h = �x = 0.03125 (i.e., 102,400 finite difference nodes, where
�h is the grid spacing in the h direction) and the CD2 averaging. We emphasize that the 2D numerical
solution has not been as exhaustively evaluated as the 1D has, and while we are near, we may not exactly
be at the converged (i.e., grid-independent) solution for our NHD = 2 case. See color version of this figure
at back of this issue.
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Figure 14. Incorporation of the HBPU into a nonstandard ‘‘modified total potential,’’ �(�), evaluated
using (26b). (a) For a material nonlinearity of n = 15, while for the hypodiffusion number, NHD < 2, �(�)
is a monotonic function of saturation and is near to that of the standard van Genuchten [1980] model (i.e.,
NHD = 0), for NHD � 2 the modified total potential is no longer monotonic. For NHD = 2, �(�) increases
to a value of ��0.63 at a saturation of �0.0025 and then begins to decrease until it catches up with the
standard model (i.e., NHD = 0) as full saturation is approached. While the vertical axis is clipped off at a
value of zero, for NHD = 5 and larger, �(�) attains maximum values that are positive. (b) For NHD = 2 the
functional response with respect to the material nonlinearity, n, shows that while for n values of 2 to 9
�(�) is monotonic and near to the standard van Genuchten [1980] model; for n = 11 and larger, �(�)
becomes nonmonotonic. As in Figure 13, the transition of �(�) from monotonic to nonmonotonic as a
function of NHD and n also tracks the behavior of the numerical solution results in Figures 4 and 9. To
evaluate the various parts of (26b), we use (12a) and (12c) with a* = 1, b = 0.1.

Figure 13. Incorporation of the HBPU into a nonstandard ‘‘modified permeability function,’’ ~k �ð Þ,
evaluated using (25b). (a) For a material nonlinearity of n = 15, and with the hypodiffusion number of
NHD < 2, ~k �ð Þ is a monotonically varying function of saturation, �, and behaves near to the standard
Mualem’s [1976] model (i.e., NHD = 0). However, as NHD increases, ~k �ð Þ becomes nonmonotonic,
yielding a negative minimum that depending on NHD, can be quite large. (b) For NHD = 2, when n is
below 9, ~k �ð Þ behaves near to that of the standard form (i.e., when NHD = 0). However, for n of 11 and
larger, ~k �ð Þ is nonmonotonic. Note that the transition of ~k �ð Þ from monotonic to nonmonotonic as a
function of NHD and n is consistent with a similar transition in the numerical solution of the hypodiffusive
governing equation shown in Figures 4 and 9. To evaluate the various parts of (25b), we use (12a), (12b),
and (12c) with a* = 1 and b = 0.1.
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NHD increases above 1, �(�) becomes nonmonotonic.
Relating the functional behavior of �(�) to that of the
saturation profiles (e.g., those shown in Figures 2a, 2c, and
4a), we see that when �(�) becomes nonmonotonic, so do
the solutions to the HDE. One can also confirm that for
NHD = 2, as n is increased to �11 and above, �(�) also
becomes nonmonotonic (Figure 14b) as do the solutions
shown in Figure 9. Thus we see that the HBPU effect can
also be incorporated into a nonmonotonic equation of state.

6. Concluding Remarks

[38] In this paper, we considered the ability of an extended
governing equation for porous-continuum scale unsaturated
flow to model GDF. As presented by Eliassi and Glass
[2002], the basis for this governing equation is the experi-
mentally observed hold-back-pile-up (HBPU) effect. The
HBPU effect can be mathematically formulated in a variety
of ways. In the HDE form that we consider in this paper, the
HBPU effect is formulated as a nonlinear Laplacian-type
term of the moisture content that is hypodiffusive in nature.
While parameterization of a hypodiffusive term is still open,
considering the theory of Gray and Hassanizadeh [1991],
such a term arises by assuming that the free energy of the
water phase decreases as a function of saturation. Formulat-
ing this function with a simple power law, numerical solution
of the 1D form of the HDE (under conditions of constant flux
infiltration into initially dry, highly nonlinear, and hysteretic
materials), illustrates that the HDE can indeed yield the
underlying nonmonotonicity at the WF required by GDF.
The behavior of the solution is dependent on the hypodiffu-
sion number, NHD, a new dimensionless group that controls
the size of the hypodiffusive term. At small enough values of
NHD, the HDE yields a monotonic behavior and the solution
is near to the standard form of the RE. As NHD increases, the
solution becomes nonmonotonic and the saturation at the 1D
‘‘finger tip’’ increases quickly, yielding a fully saturated tip
at an NHD of 2.
[39] Considering an NHD of 2, as we move in parameter

space (i.e., initial moisture content, applied flux, and media
nonlinearity) out from the region where GDF has been
observed, the HDE solution undergoes the required transi-
tion to monotonic. Thus, as either the initial moisture
content or the applied flux are increased, or the nonlinearity
of the porous material, nPWC, is decreased, the nonmono-
tonic signature of GDF degenerates. We also examined the
numerical response of the HDE for a number of situations
where the solution must remain monotonic. Examples of
such cases include both horizontal imbibition and capillary
rise into initially dry and highly nonlinear material. For
these examples, monotonicity is indeed found.
[40] Our 1D solutions demonstrate the development of

nonmonotonicity as a function of NHD and the critical
controls displayed by physical parameters on GDF occur-
rence. This nonmonotonicity must arise naturally within the
governing equation for a porous-continuum approach to be
able to model GDF in two and higher dimensions. We
illustrate this point in a set of 2D solutions where numer-
ically simulated GDF conforms reasonably well to that
found experimentally. Finally, we note that the results found
for the HDE, also apply to the alternative hyperbolic
formulation of the HBPU effect. Thus one is neither tied
to the HDE nor the underlying physics contained within the

theory of Gray and Hassanizadeh [1991] to formulate the
HBPU effect. Indeed, the HBPU can also be incorporated
into an equation of state or even in a constitutive relation.
Thus the underlying physics for the HBPU effect, required
by a porous-continuum approach to model GDF, remains
open.
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Figure 12. Portions of the saturation fields for the 2D numerical solutions, using the RE and HDE, are
compared with experiment. (a) For NHD = 0 (i.e., the standard form of the RE) a uniform and monotonic
WF advances into the 2D domain. (b) For NHD = 2 the WF breaks up into nonmonotonic GDF.
(c) Experimental GDF from Glass et al. [1989]. Both numerical solutions (5 by 14.2 dimensionless units)
and experiment (8.3 by 14.2 dimensionless units) are shown at the same scale. Dimensionless solution
time for both NHD = 0 and 2 is t = 30, which was chosen for comparison with the experiment. Numerical
solutions used constant grid spacing of �h = �x = 0.03125 (i.e., 102,400 finite difference nodes, where
�h is the grid spacing in the h direction) and the CD2 averaging. We emphasize that the 2D numerical
solution has not been as exhaustively evaluated as the 1D has, and while we are near, we may not exactly
be at the converged (i.e., grid-independent) solution for our NHD = 2 case.
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