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[1] Under low flow conditions (where gravity and capillary
forces dominate) within an unsaturated fracture network,
fracture intersections act as capillary barriers to integrate
flow from above and then release it as a pulse below. Water
exiting a fracture intersection is often thought to enter the
single connected fracture with the lowest invasion pressure.
When the accumulated volume varies between intersections,
the smaller volume intersections can be overloaded to cause
all of the available fractures exiting an intersection to flow.
We included the dynamic overloading process at fracture
intersections within our previously discussed model where
intersections were modeled as tipping buckets connected
within a two-dimensional diamond lattice. With dynamic
overloading, the flow behavior transitioned smoothly from
diverging to converging flow with increasing overload
parameter, as a consequence of a heterogeneous field, and
they impose a dynamic structure where additional pathways
activate or deactivate in time. INDEX TERMS: 1848

Hydrology: Networks; 1875 Hydrology: Unsaturated zone; 1869

Hydrology: Stochastic processes. Citation: LaViolette, R. A.,

and R. J. Glass (2004), Self organized spatio-temporal structure

within the fractured Vadose Zone: The influence of dynamic

overloading at fracture intersections, Geophys. Res. Lett., 31,

L18501, doi:10.1029/2004GL020659.

1. Introduction

[2] Unsaturated flow experiments in fracture networks
indicate that intersections can direct flow to a single exiting
fracture [LaViolette et al., 2003]. In addition, they have been
found to gather water from above to release as a pulse
below [Wood et al., 2002]. Recently we employed a simple
automaton to study the consequences of these two fracture
intersection behaviors embedded within a network [Glass
and LaViolette, 2004, hereinafter referred to as I]. This
‘‘tipping bucket model’’ or TBM is similar to the generic
directed ‘‘sand-pile’’ model originally studied by Dhar and
Ramaswamy [1989] but with the added complication of
stochastic, singly directed flow. The TBM idealizes the
fracture network as a regular, two-dimensional array of
intersections arranged on a diamond lattice (Figure 1).
Periodic boundary conditions are implemented along
the vertical edges of the network of 100 (horizontal) �
1000 (vertical) sites, so that water exiting on one side
reappears on the other. Buckets are placed on alternate sites
on the horizontal axis so that there are 50 buckets on each

row. F is defined as the fraction of intersections, or buckets,
that are connected to only one or the other but not both of
the neighboring buckets in the row below. For F > 0, the
choice of which of the two neighboring buckets to connect
is random; once chosen, it remained set for the duration of
the simulation. Water is added in unit increments at random
to buckets along the top row and exits the network from the
bottom row. Between additions, the network is relaxed by
tipping the eligible buckets, as follows: when the level of
water in a bucket j exceeds its threshold qj (which in I were
all set to 10), it tips and distributes all of its volume to the
(one or two) connecting buckets in the row below; the
direction of the flow is always top to bottom. We obtain
from operation of these simple local rules a self-organized
spatial-temporal structure. For increasing F, channels form
due to convergence within the network; spatial structure
with depth transitioned from divergent to braided to the fully
convergent hierarchal end member at F = 1. Water moves
through these defining structures as pulses, or avalanches,
that can penetrate to great depths. The avalanche size
distribution transitions away from power-law behavior as
F increases and convergence breaks the scaling. For only
single outflow (F = 1), convergence is maximal and
every avalanche spans the entire system but transmits the
minimum volume of water.
[3] Here, we extend the TBM to consider the added

realism of the dynamic overload process. Dynamic over-
loading occurs when a large volume of fluid is passed to a
small volume intersection and causes the bucket to split its
flow even if normally it would only direct the flow singly.
We consider this additional process in context of a heteroge-
neous bucket field as is also expected in natural fracture
networks. We find that as occurrence of dynamic overloading
increases, the model behavior transitions from convergent
flow back to divergent flow comparably to that found in I
forF. The position of the transition is dependent on the width

Figure 1. Network of fracture intersections represented by
buckets. For F = 0, each bucket connects to exactly two on
the row above and two on the row below. For F > 0, one
arrow leaving a bucket may be removed. For F = 1, all
buckets have one arrow in and one arrow out.
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of the distribution and can be roughly scaled by its coefficient
of variation. The divergent flow with overloading differs
from that for F as it occurs as a natural consequence of a
heterogeneous field and imposes a dynamic structure where
additional pathways activate or deactivate in time.

2. Dynamic Overload Simulations

[4] In the TBM, a fracture intersection is treated as a
capillary barrier from which two fractures depart to connect
to neighboring intersections. Water can enter the pool

(bucket) above the intersection from either of the two
connected intersections above. As the volume increases,
the pressure builds at the intersection and eventually the
threshold (i.e., pressure at the intersection) for entering the
capillary barrier is reached. When the capillary barrier fails,
only one of the fractures is likely to be invaded, as the
invasion pressure for each will be different. Such low flow
behavior generates slender plumes as has been found
experimentally [Glass et al., 2003a, 2003b] and simulated
using modified invasion percolation models, even without
considering fracture intersections as capillary barriers
[Glass et al., 2004]. However, the pressure at the intersec-
tion can be pushed above the invasion pressure of the
barrier if a large volume of water is passed from above
and causes the pool height to rise above the minimal height
required for breach. When this happens, increased pressure
at the intersection allows fluid to exceed the entry pressure
of both fractures and thus flow will be split.
[5] To model the overload process, we added a second

threshold condition at each bucket through introduction of
the overload parameter W � 1 constant for the entire
network. For each bucket j, if the bucket receives a load
Lj that is larger than qj by a factor of W, i.e., if Lj > W qj, then
the restriction to flow into only one bucket below (if any) is
overridden for that instance only, so that both of the left and
right connecting buckets below equally receive 1

�
2 Lj from j.

[6] In context of overloading, the added realism of
variable bucket threshold within the network is useful.
The qj here were assigned to each bucket (to remain fixed
thereafter), without spatial correlation, by randomly sam-
pling from the Fréchet distribution. This distribution, a

Figure 2. The ‘‘narrow’’ (blue with solid diamonds) and
the ‘‘wide’’ (red with solid squares) density distributions,
respectively, of the bucket threshold q.

Figure 3. Distribution of flow for three choices of the overload parameter W. The left (a), center (b), and right (c) panels
show the accumulated number of times a bucket has been tipped with W = 4, 12, and 25, respectively. The far right (d) panel
shows the ratio of the number of times a bucket was overloaded to the number of times it was tipped for W = 12. Each result
is for the ‘‘wide’’ threshold distribution.
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member of the ‘‘generalized extreme value’’ family of
distributions [Coles, 2001], is unimodal, possesses a posi-
tive skew (which is often observed for measured fracture
aperture distributions) and happens also to have convenient
scaling properties. Its essential singularity at the origin
ensures a smooth, rapid approach to zero density there. Its
algebraic decay for large thresholds is both physical [Bonnet
et al., 2001] and convenient in that it permits especially
wide as well as narrow distributions. Its two parameters
were set by specifying both the mean threshold (mq) and its
standard deviation (sq) for each of two cases: a ‘‘wide’’
(sq = 10) and a ‘‘narrow’’ (sq = 1) distribution. In both cases
we set mq = 10, in correspondence with I. The two choices
for sq were made to bracket our guess for the variation that
would be found in natural fractured rock; experiments
on fracture aperture distributions suggest that the closely
related threshold distribution might be even wider than our

‘‘wide’’ case [Bonnet et al., 2001]. Figure 2 shows the
distribution for these two cases.

3. Results and Discussion

[7] Each simulation was driven by 8 � 106 unit addi-
tions, (following the first 106 additions that were discarded),
F was set to unity, and W set to a fixed value chosen from a
range from unity, where the F = 0 results were recovered, to
sufficiently large values, where overloading was absent. For
increasing W, the region swept by avalanches over the
course of an entire simulation transitions from the fully
divergent F = 0 result through a braided to the fully
convergent regime. Images of the number of times a bucket
tips over the course of a simulation are shown in Figure 3
for a single realization of the wide distribution bucket
network and W of 4, 12, and 25. Flow structures transition

Figure 4. Two measures of flow convergence. The left scale shows the mean number of buckets in the bottom row
employed in each drip event; the left-hand triangles correspond to the left scale. The right scale shows the mean of the
number of sites divided by the length of each avalanche; the right-hand triangles correspond to the right scale. The main
panel shows the variation of both with respect to the overloading parameter W with F = 1. Both sets of red triangles are read
from the bottom scale, corresponding to W for the ‘‘wide’’ distribution. Both sets of blue triangles are read from the top
scale, corresponding to W for the ‘‘narrow’’ distribution. The closed symbols correspond to W > 1; the open red or blue
triangles correspond to W = 1. The inset shows for comparison (from paper I) the variation of both with respect to F, for
constant threshold and no overloading. The left and right scales are identical to those of the main panel. The dashed lines in
either panel are only guides to the eye.
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from primarily single bucket wide pathways at W = 25 (near
the fully convergent F = 1 result) to primarily diffuse
plumes at W of 4. This transition is similar to that found
in I for F (see their Figure 3). Locations where occasional
overloading causes the formation of an ephemeral flow path
can be easily seen in Figure 3c (W = 25) as cooler colors
emanating from buckets that split flow. For W = 12
(Figure 3b), many such overloading events occur to create
a braided structure. Figure 3d shows the ratio of the number
of times a bucket is overloaded to the number of times the
bucket tips over the course of this simulation (W = 12). We
also see in Figure 3, for each W, a transition from converging
to diverging flow with depth, the smaller W the quicker the
transition. This occurs because overloading is dependent on
having a large bucket above a smaller one (j) such that the
size of the load passed must exceed Wqj, and the probability
for this to occur increases with depth and with decreasing W.
[8] In Figure 4 we display the behavior of two measures:

first, anticipating experiments that might actually be (but
have not yet been) performed on opaque systems, we
examine the average number of exiting fractures where
water leaves the network at its bottom (left axis); second,
we look inside the flow itself, and consider avalanche shape
by measuring the ratio of the number of buckets tipped in an
avalanche event to the depth of event penetration (i.e., the
number of contiguous rows) (right axis). We also have
plotted (inset) the same measures for I with variation of F
to demonstrate that the behavioral response for W is indeed
very similar as for F alone. The difference in sensitivity to
W for the two-bucket size distributions is quite dramatic. In
Figure 4 we have scaled the axes for W (i.e., wide and
narrow distributions) to capture the appropriate variations in
a single plot. The narrow and wide distribution scales are
different by factor of about 10, the same as between the
coefficient of variation for the two distributions. Such
scaling is similar to that found in other analyses that weigh
the influence of random variation to an organizing influence
such as is represented by the overloading process here [e.g.,
Glass et al., 2003a, 2003b]. Beyond this gross scaling,
differences remain in Figure 4 that are intrinsically related
to the influence of the bucket size distribution itself. There
is a systematic depression of the curve for the width/length
ratio with increasing distribution width, i.e., plumes are
narrower and penetrate deeper for comparable W for wider
distributions (Figure 4, right axis). This tendency for nar-
rower plumes to form in wider distribution networks is
preserved in the number of exiting fractures that carry flow
(Figure 4, left axis) except near small W.

4. Conclusions

[9] The TBM augmented with dynamic overloading
yields results that are similar to those obtained previously
by I. In contrast, while the results of I were obtained by
tuning the fraction of singly directed vs. splitting buckets,
with dynamic overloading, divergent flow naturally occurs
within the constrained (F = 1) network. Additionally,

inclusion of dynamic overloading captures temporal varia-
tion in pathway geometry, i.e., the formation of additional
ephemeral pathways in time. Such transient behavior has
been seen in the recent experiments of Glass et al. [2002]
and Wood et al. [2004]. However, it is likely that yet-to-be-
incorporated memory effects (e.g., pre-wetting) will be
required to fully simulate flows in fracture networks. Such
memory effects would include the possibility that an over-
loading event may change the original bias of the intersec-
tion; this is because capillary barriers are tipping points, and
once they tip they may continue to split flow for a time, or
flow entirely into the new branch. Finally, the formation of
ephemeral transport pathways and other spatial temporal
structure plays an important role in the reactive transport of
contaminants in the subsurface.
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