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Water infiltration into layered soils where a fine-textured soil overlays a
coarse sand exhibits Taylor instability, and the flow field in the coarse sand
breaks into fingers. Following the pioneering work of Saffman and Taylor
(1958}, Hill and Parlange (1972) studied this phenomenon experimentally
and later proposed a theoretical model (Parlange & Hill, 1976). In this
first experiment, heterogeneous packing of the coarse sand promoted merg-
ing of fingers resulting in a small number of near-saturated fingers. The
increased water content resulting from merging of fingers is readily ap-
parent from the experiments of Glass et al. (1989a). The theory provided
a good description of finger diameters both in the laboratory and the field
(Starr et al., 1978). Later, Hillel and Baker (1988) pointed out that when
water first enters the coarse sand the matric potential should be expected
to be negative and the finger to be unsaturated. The theory of Parlange
and Hill (1976) applies equally well to that case, yielding for average finger
width, D,

B nS% 1
b= [Kf(of - of)] [1 - (quF)] =

Here, 6; is the initial water content in the coarse sand, 0, is the average
water content in the fingers, and Ky and S¢ are the corresponding con-
ductivity and sorptivity. The experimental conditions for which Eq. [1]
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holds consists of a two-dimensional chamber (where the fingers can be
conveniently observed) and a constant flux ¢ entering the chamber per
unit width of the chamber. The flux is controlled by the conductivity of
the fine-textured soil layer overlaying the coarse sand.

We wrote Eq. [1] as the product of two square brackets. The first one
is soil-dependent and requires a knowledge of 6. Even with a very ho-
mogeneous soil, Glass et al. (1989a) find that mergers take place between
fingers. For instance, in their Fig. 7 each finger resulted from two mergers
on the average. As mentioned earlier the water content in each individual
finger is primarily a function of mergers, as well as the water entry potential
in the coarse sand as discussed by Hillel and Baker (1988). Figure 7 of
Glass et al. (1989a) also shows that there is a slight widening of fingers
with water content, i.e., with the number of mergers. This is quite con-
sistent with the form of the first bracket in Eq. [1] and the behavior of
real soils. For a real soil S} increases more rapidly than K{&; — ;) as 0
increases toward saturation. There is, however, a compensation between
the two factors so that the first bracket is not too sensitive to the exact
value of g, as observed experimentally. This is also quite useful in the
interpretation of experiments with the help of Eq. [1]; i.e., even though
the number of mergers will not be identical for all fingers, it will result in
only slight variations in width from finger to finger so that the average
width for one experiment remains quite representative of all the fingers in
that experiment.

The second bracket in Eq. [1] depends on the ratio ¢/ K, i.e., depends
on the boundary condition through ¢ and the soil through K. As discussed
by Hillel and Baker (1988) the term ¢/Kp is also the fraction of the soil
occupied by fingers. Thus, a convenient way to check the validity of Eq.
[1] is to plot D as a function of the fraction of soil wetted by fingers. Figure
5-1 shows the dependence of D on the fractional area occupied by fingers
for a particular sand. Experimental points (<) are from Glass et al. (1989b)
for sand with a mean diameter of 0.0991 cm and the theory (solid line)
represents Eq. [1] with the first bracket estimated for that particular sand.
For this sand, D* = D. Notice that according to Eq. [1], finger diameter
for two sands is not equal for the same wetted area. It is clear that there
is a remarkable agreement between theory and observations.

We are now in position to check the application of the Miller and
Miller (1956) theory of scaling to finger instability. With this theory, the
scaled, or reduced, finger diameter should be independent of the sand

type.

MILLER SCALING

In a fundamental paper, Miller and Miller (1956) discussed the rela-
tionship between properties for similar soils, i.e., soils packed identically
and with identical particle distributions when scaled with the average par-
ticle size.
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Fig. 5-1. Reduced finger width, D*, as a function of the fractional area of weltted sand, i.¢.,
occupied by the fingers. The diamonds correspond to M = 0.0991 e¢m, and the dots to
M = 0.0707,0.0337, and 0.021 cm as indicated on the figure. The solid line is the theoretical
result obtained from Eq. [1] and [2].

To obtain such sands, a white silica sand used commercially for sand
blasting was dry-sieved, yielding 10 sands of different mean grain sizes.
Out of those, three were selected having similar particle size distributions
as the sand used by Glass et al. (1989b). The average particle sizes, M,
are 0.021, 0.0337, and 0.0707 cm, respectively, with the original one (Glass
et al., 1989b) being M = 0.0991 cm. The maximum and minimum particle
sizes are fairly close to the mean in each case with a distribution essentially
uniform in between. Thus, the similarity of all distribution results if the
spread of particle size divided by the average size is the same for all four
sands. The numbers given in Table 5-1 show that this is indeed the case
with a fairly good accuracy.

Under those conditions we expect the widths of the fingers to ditfer
according to the first bracket of Eq. [1]. To calculate the dependence of
this bracket on M we follow the rules for similar soils (Miller & Miller,

Table 5-1. Average particle size and relative size spread for four sands.

Maximum-minimum size

Mean grain
diam. M M
cm
0.0991 0.330
0.0707 0.348
0.0337 0.365

0.0210 0.348
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1956). The soil-water potential (pressure) ¥, in the fingers behaves like
M~1, but the corresponding, 0, is the same. By analogy with Poiseuille
flow Kr must behave like M?, where as 8% ~ [ Kd¥ should behave like
M. Altogether then the first bracket is proportional to M~'. That is, the
finger width is inversely proportional to the mean grain size. To take
advantage of this result, we define a reduced finger width, D* given by

D* = D0.0991/M [2]

With this definition, for the same fractional area occupied by the fingers,
all reduced finger widths, D*, would be the same, and correspond to the
physical width D when M = 0.0991 already plotted in Fig. 5-1.

Several experiments are reported in Fig. 5-1. It is clear that the three
experiments with M = 0.021, 0.0337, and 0.0707 cm, respectively, when
the fractional area occupied by fingers is less than 0.5 follows the reduction
procedure very well. Two experiments when it is greater than 0.5 and for
M = 0.0337 cm are also reported. The discrepancies for those two exper-
iments are easily explained. As the fractional area increases, fingers are
close to each other and some may coalesce, i.e., run parallel without
actually merging. If those siamese twins are incorrectly counted as one,
the result is an apparent finger width, which is greater than it should be.
This is what happened when the fractional area was about 0.61. For the
last experiment, g was close to the saturated conductivity so that the flow
was close to being stable. In fact, the predicted finger width was several
times larger than the chamber width. Under those conditions fingers could
not develop. The spurious D* indicated represents the wave length of the
wavy front, which appeared in the chamber.

These last two results were given to point out that some care must be
given in the interpretation of unstable flows. Luckily in practical situations,
when fingers are observed in the field, the fractional area occupied by
fingers is always small and those difficulties do not appear. In fact, for
those field experiments the influence of the second bracket is always small.

In conclusion we have shown that Miller’s scaling model can be applied
with confidence to predict finger width for unstable flows. This should
prove very useful in practice to easily estimate finger width in soils of a
given texture and conclude whether instability could become a problem,
for instance to predict the fate of contaminants.
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