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ABSTRACT: We consider the use of a modified diffusion-limited aggregation (DLA) process to model immis-
cible viscous displacements in rough-walled fractures. We include the effects of local aperture field variability
to channelize flow within a fluid phase and capillarity to smooth the displacement front. Model behavior is
illustrated over a limited set of simulations in both a Hele-Shaw cell, and a variable aperture field that is corre-
lated well below the simulation scale.

1 INTRODUCTION

The issue of immisicble displacement of one fluid by
another rises in the context of enhanced oil recovery,
remediation of nonaqueous phase liquids, CO2 se-
questration, and other applied geologic problems. In
discrete fractures, accessibility will combine with
competition between capillary, gravity, and viscous
forces to control the displacement process. Here we
focus on behavior in a single horizontal fracture at
the sub-meter scale for conditions where viscous
forces cannot be ignored. Immiscible displacement
processes can (and have been) modeled using a num-
ber of different approaches that may be broadly
categorized as continuum or discrete. In continuum
approaches, one either: 1) solves the Navier-Stokes
equations for each fluid within complex geometry,
and separated by a moving boundary where kinetic
and dynamic boundary conditions must be met; or,
2) describes the system as a two-phase continuum
with relative permeability and pressure-saturation
relations defined for both fluids at every point. In
the discrete approaches, a set of local ‘rules’ are ap-
plied to model pore-scale behavior; broad categories
of rules include: 1) Particle interaction models (PIM)
such as cellular automata, lattice-Boltzman, or lat-
tice-gas where large quantities of particles simultane-
ously move and interact according to a list of rules;
2) Invasion percolation (IP) where individual aper-
tures along the fluid-fluid interface are filled accord-
ing to local accessibility and capillary criteria; and, 3)
Diffusion-limited aggregation (DLA) in which ran-

dom particles moving through the displaced fluid are
used to identify locations on the interface for ad-
vancement.

Both the Navier-Stokes and PIM approaches are
currently limited by the difficulty of defining the
fluid-fluid interface, and computational requirements
at our scale of interest. Two-phase continuum ap-
proaches are computationally tractable, but do not
correctly include the physics of displacement proc-
esses; i.e. the fluid phases intermingle where they
should be separate. IP and DLA have potential at the
scale of interest, both are growth models that encap-
sulate the critical unit process (aperture filling), and
iterate that process to yield large scale behavior. The
basic IP process models capillary dominated hori-
zontal displacements on a random aperture field.
However, IP has recently been modified to include
gravity and the dynamic calculation of interfacial
curvature at the fluid-fluid interface within a fracture
(e.g. Glass, 1993, Glass et al., 1998). The latter,
termed MIP, yields simulated behavior that matches
experimental measurements quite well. In addition,
there have also been recent attempts to further in-
clude viscous forces in IP or MIP (Xu et al., 1998,
Ewing & Berkowitz, 1998) with excellent corre-
spondence to experiments in heterogeneous porous
media where capillary, gravity, and viscous forces all
played a role (Glass et al., in press).

Here we focus on a DLA based approach for
simulating fluid-fluid displacement. The DLA proc-
ess begins with a cluster that consists of a single oc-
cupied grid block at the center of a large regular lat-



tice (Witten & Sander, 1981). A particle introduced
at a random location far from the cluster walks ran-
domly on the lattice until it contacts either the clus-
ter or a system boundary. On contacting a boundary,
the particle dies and is replaced by another; however,
if it enters a grid block adjacent to the cluster, the
particle stops, and that grid block joins the cluster;
the process is then repeated until some criteria is met
(e.g. cluster size, number of particles). It was later
shown that this simple model acts as a solution to
the LaPlace equation (Witten & Sander, 1983), and is
consistent with miscible displacement of a viscous
fluid by an inviscid one in the limit of no mixing
(Paterson, 1984).

Our objective is to develop a DLA based model
for immiscible displacement within a rough-walled
fracture that incorporates: (1) full spectrum of vis-
cous behavior from viscous stabilized to viscous de-
stabilized (especially in transition); (2) influence of
capillary forces at the fluid-fluid interface; and (3)
the critical influence of aperture variation to create
complexity due to both capillarity at the phase inter-
face and channeling of flow within each phase.
Sideiqui & Sahimi (1990) partially addressed (1), and
others (e.g. Vicsek, 1984, Szep et al., 1985, Ka-
danoff, 1985) have explored (2); however, neither is-
sue has been solved, and the literature appears to be
silent on (3). In this paper, we begin model devel-
opment by focusing on the influence of capillary
forces at the fluid-fluid interface, and in the context
of only local roughness induced influence on flow.

2 MODEL DEVELOPMENT

The model suggested here is like DLA in that the
cluster of grid blocks representing the displacement
front grows in discrete steps at locations identified
by independent particles moving through the dis-
placed fluid; particles are not allowed to enter, nor
move through the displacing fluid. A first principle
difference from DLA, is that particles move through
the displaced fluid on off-lattice random trajectories
biased according to local transmissivity. In this way,
we allow local aperture geometry to influence growth
of the displacement front by focusing particles into
conductive zones. A second principle difference
from DLA is in how we identify “sticking” between
a moving particle and the growing cluster. Cluster
growth in the original DLA model is promiscuous, in
that all particles contacting the cluster “stick” and
became part of it; this leads to highly ramified and
fractal clusters dominated by noise. In order to in-
crease resemblance to fluid-fluid displacement (i.e.
produce more compact structures), a number of

authors have suggested modifying the conditions un-
der which a particle sticks to the cluster.

Of particular interest are sticking rules that ap-
proximate the effects of surface tension by consid-
ering local cluster density as an analog to interfacial
curvature in the fracture plane (e.g. Vicsek, 1984,
Kadanoff, 1985, Szep et al., 1985). We incorporate
the effects of interfacial curvature at first order by
only allowing particles contacting the cluster to stick
if local density exceeds a predetermined criteria (k).
In our model, “nearest neighbors” to the site being
considered are given more weight than portions of
the cluster further away. Figure 1 shows a site (black
dot) being considered as a candidate for membership
in the adjacent cluster (gray blocks). First, we center
a box of size b x b on the candidate site (b = 5 in Fig-
ure 1, and must be an odd number). Within that box,
we then calculate a weighting factor (w) for each site
occupied by the cluster; weights are given by the in-
verse radial distance between that site and the candi-
date site (w = 1/r), which for Figure 1, would be 1/1,
1/√2, and 1/√3. We then sum the values of w, and
normalize the total to the sum of all possible values
of w within the box. If this normalized measure of
interfacial curvature exceeds our predetermined crite-
ria (k), the particle sticks, otherwise the particle dies
and a new one is started. Standard DLA corresponds
to k = 0, and the influence of interfacial tension in-
creases with k. The upper limit on k (kmax) is de-
pendent on geometry of the cluster seed; in order for
growth to begin, kmax must be small enough to allow
sticking at the seed. We also note that this model
does not include restructuring of the cluster in the vi-
cinity of contact, as has been suggested by others
(e.g. Vicsek, 1984, Kadanoff, 1985). Finally, size and
shape of the box are adjusted to accommodate sites
near the side boundaries.

Figure 1: Interfacial curvature is estimated at first order by cal-
culating density of the cluster (gray blocks) within a box
(dashed lines) centered on the grid block being considered for
membership in the cluster (marked with a dot). Relative influ-
ence of various sites in estimating interfacial curvature is in-
versely proportional to distance from the site under considera-
tion (see arrows).



3 MODEL IMPLEMENTATION

Displacement from a fracture edge is simulated by
configuring our simulation domain as shown in Fig-
ure 2. A seed for the growing cluster is established
by filling a strip of blocks along one edge with the
displacing fluid (e.g. Kadanoff, 1985, Flury & Flu-
hler, 1995); all remaining blocks are initially occupied
by the fluid being displaced. Particles are started
from randomly selected locations along a “release
line” that is parallel to the seed (Fig. 2), and sepa-
rated from the growing cluster by a distance (d). As
the cluster grows, the release line is moved in the x
direction to maintain that separation. For computa-
tional expediency, particles that wander to a distance
of 2d from the cluster tip in the x direction are de-
stroyed, and a new particle started; this destructive
boundary is also moved with cluster growth. Long
edges of the system (Fig. 2) are designated as refusal
boundaries; movement across these boundaries is
disallowed, the particle must make another (random)
choice. The refusal boundary condition could also be
described as elastic reflection without conservation
of momentum. Finally, because particles are not al-
lowed to enter the displacing fluid, particle interac-
tions with the left-hand boundary are irrelevant.

Particle movements are made off-lattice in steps
one grid block in length. For every step, the unit dis-
placement vector is determined by resolving compo-
nent vectors in the four directions (+x, -x, +y, -y).
Each component vector is calculated by choosing a
random number (0 to 1) and multiplying it by the lo-
cal transmissivity in that direction. The particle is
then moved according to the displacement vector,
unless doing so would initiate contact with a bound-
ary or the cluster. This process is repeated until the
particle contacts the cluster, a boundary, or dies. In a
variable transmissivity field, a particle could become
effectively trapped between a material heterogeneity
and a refusal boundary. In order to preclude infinite
loops, particles are allowed a limited number of
moves (including attempts) before they are de-
stroyed and replaced by a new particle.

4 ILLUSTRATIVE SIMULATIONS

The model described above was exercised over a
range of values for k on two transmissivity fields: a
parallel plate geometry (Hele-Shaw cell) and a vari-
able-aperture field originally measured by Nicholl et
al. (1999). The variable-aperture field had stationary
spatial statistics similar to those given by an expo-
nential function, with a coefficient of variation equal
to 0.24, and well defined spatial correlation length.

For computational expediency, we limited our simu-
lations to a 300 x 400 subset (~56 x 75 correlation
lengths) of the measured field (see Fig. 3); the Hele-
Shaw cell was also explored over a 300 x 400 grid.
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Figure 2: Model conceptualization on a rectangular grid. Black
grid blocks along the left side represent the seed, gray blocks
are the growing cluster, and solid lines (right side, top and bot-
tom) represent system boundaries. Particle A is started from
the release line (dashed line) located a distance d from the tip
of the growing cluster, and then walks about the domain (see
rules in text). Upon reaching a distance of 2d from the cluster
tip (gray line), particle A is destroyed, and a new one released.
Particle B reaches an empty grid block adjacent to the cluster.
This grid block will be considered for membership in the clus-
ter if the next step of particle B would take it onto the cluster.

In a small difference from DLA (e.g. Kadanoff,
1985), we defined contact as an attempt by the
moving particle to walk onto the cluster from an ad-
joining grid block (contact point). Box size (b) for
calculating cluster density was arbitrarily set to look
ten grid blocks in each direction from the contact
point (b = 21). To correspond with our choice for b,
the seed filled the first 10 columns of each array,    
(b - 1)/2 = 10; this configuration sets kmax = ~0.46.
Distance between the cluster tip and release line (d)
was set at 25 grid blocks, which is about 4.5 times
the correlation length of the variable-aperture fields.
This value was chosen as a trade-off between intro-
duction of artifacts and computational efficiency.
Much smaller values for d altered model outcome
significantly, while much larger values led to an ex-
ponential increase in computation time. In each frac-
ture, a single realization was performed at k = 0, and
increasing values of k in increments of 0.05. In the
Hele-Shaw cell, simulations were run for k = 0 to
0.46; due to time constraints, we were unable to
complete simulations for k > 0.35 in the variable-
aperture fracture.



Figure 3: Variable-aperture field considered here is a 300 x 400
grid block subset of an aperture field measured by Nicholl et
al. (1999) using techniques presented by Detwiler et al. (1999).
Light shades represent large apertures and dark shades small
ones.

5 RESULTS

Simulations demonstrate that both transmissivity in-
duced bias and k based capillarity have first-order in-
fluences on phase invasion structure (Fig. 4). For    
k = 0, the growth process leads to a highly ramified
structure with densely packed branches. Conversely,
the structure formed at k = 0 in the variable-aperture
field is much more open, with little small-scale
branching; intermediate-scale branches make numer-
ous sharp changes in direction and are separated by
distances on the order of the aperture correlation
scale or larger. The end result is a structure that
could best be described as a backbone. As k in-
creases, branch tips in the Hele-Shaw cell begin to
close, and encircle portions of the displaced fluid; in
the variable-aperture field, branches become thicker
and denser, but generally remain separate. At larger
values of k (k = 0.20), interfacial curvature domi-
nates cluster growth in the Hele-Shaw cell; branched
structures coalesce to form smooth rounded fingers,
tip splitting reduces, and fingers become increasingly
straight. In the variable-aperture fracture, a similar
process is seen, however with a local correlation su-
perimposed. Branches become increasingly smooth
and thicker at the local scale and then begin to coa-
lesce to form large scale fingers of roughly the same
scale as seen in the Hele-Shaw cell (compare simula-
tions at k = 0.35). Note that the entrapped phase
saturation is nearly identical, but the structure is
quite different between the two at k = 0.35 (see be-
low). At the largest value of k considered (0.46), fin-
gers within the Hele-Shaw cell merged to form a flat
front; insufficient time was available to run similar
simulations in the variable-aperture field.

In both fractures, the growing cluster surrounds
and entraps portions of the displaced fluid. We de-
fine the areal saturation as the number of sites occu-
pied by the cluster relative to the total number
within the bounds of the cluster (occupied plus en-
trapped displaced fluid). Areal saturation is lower in
the Hele-Shaw cell than the variable-aperture field at
all values of k considered (Fig. 5). There is also a sig-
nificant change in behavior at intermediate values of
k, as areal saturation first decreases sharply then in-
creases. Between k = 0.10 and k = 0.15, intermediate
scale branches in the Hele-Shaw cell begin to join at
the tips, entrapping relatively large areas within the
growing cluster. At higher values of k, the structure
is denser, and branches do not have the opportunity
to encircle large areas; hence, trapped areas are
smaller (on the order of one to several grid blocks)
and areal saturation increases. In the rough-walled
fields, branches don’t connect on a large scale at low
k, so entrapment occurs locally, and to a lesser de-
gree than in the Hele-Shaw cell. However, as k in-
creases, trapping does begin to occur above the cor-
relation length.
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Figure 5: Areal saturation describes the fraction of sites within
the cluster bounds that are occupied by the displacing fluid.

As a measure of the computational penalty for
considering our k based sticking rule, we define sur-
vival rate as the fraction of particles contacting the
growing cluster that met the sticking criteria (Fig. 6).
At k = 0, the sticking rules are promiscuous, and all
particles that make contact stick to the cluster
(100% survival). The influence of interfacial curva-
ture shows itself at k > 0.05, where the fraction of
particles sticking decreases sharply for the variable-
aperture fracture, and less drastically for the Hele-
Shaw cell. In the variable-aperture field, heterogene-
ity will tend to focus particles, rather than let them
freely access suitable sites, as occurs in the Hele-
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Figure 4: Displacement simulations for the Hele-Shaw cell (above)
and variable-aperture fracture (below).



Shaw cell. The inverse relationship between survival
rate and computation time precluded presentation  
of simulations in the variable-aperture field for        
k > 0.35; that work will be completed shortly.
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Figure 6: Survival rate describes the fraction of particles con-
tacting the cluster that stick.

6 CONCLUSIONS

Model shows a range of behavior consistent with
expectations, and provides an encouraging beginning
to modified DLA approaches for simulation of im-
miscible displacements in variable aperture fractures
where viscous forces are important. Local transmis-
sivity bias channels growth into connected large ap-
ertures to honor aperture field heterogeneity. A den-
sity based sticking rule models capillarity and
systematically smoothes the interface. In the Hele-
Shaw cell, increasing capillarity at the front leads to
increased finger width, as both theory and experi-
ments have found (Homsy, 1987). In combination
with local transmissivity bias (variable-aperture
field), increasing capillarity first widens fingers
within channels, and then causes coalescence to cre-
ate macroscopic finger structures at scales compara-
ble to those in the Hele-Shaw cell.
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