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Abstract. Dispersion of solutes in a variable aperture fracture results from a combination
of molecular diffusion and velocity variations in both the plane of the fracture
(macrodispersion) and across the fracture aperture (Taylor dispersion). We use a
combination of physical experiments and computational simulations to test a theoretical
model in which the effective longitudinal dispersion coefficient D, is expressed as a sum
of the contributions of these three dispersive mechanisms. The combined influence of
Taylor dispersion and macrodispersion results in a nonlinear dependence of D; on the
Peclet number (Pe = V{b)/D,,, where V' is the mean solute velocity, (b) is the mean
aperture, and D,, is the molecular diffusion coefficient). Three distinct dispersion regimes
become evident: For small Pe (Pe << 1), molecular diffusion dominates resulting in

D, = Pe"; for intermediate Pe, macrodispersion dominates (D, « Pe); and for large
Pe, Taylor dispersion dominates (D, = Pe?). The Pe range corresponding to these
different regimes is controlled by the statistics of the aperture field. In particular, the
upper limit of Pe corresponding to the macrodispersion regime increases as the
macrodispersivity increases. Physical experiments in an analog, rough-walled fracture
confirm the nonlinear Pe dependence of D, predicted by the theoretical model. However,
the theoretical model underestimates the magnitude of D, . Computational simulations,
using a particle-tracking algorithm that incorporates all three dispersive mechanisms,
agree very closely with the theoretical model predictions. The close agreement between
the theoretical model and computational simulations is largely because, in both cases, the
Reynolds equation describes the flow field in the fracture. The discrepancy between
theoretical model predictions and D, estimated from the physical experiments appears to
be largely due to deviations from the local cubic law assumed by the Reynolds equation.

1. Introduction

Solute transport in a rough-walled fracture is controlled by
diffusive and advective processes. The Peclet number Pe =
Vb/D,,, where V is the mean solute velocity, b is a character-
istic length scale (e.g., fracture aperture), and D,, is the mo-
lecular diffusion coefficient, defines the relative importance of
each transport process. Molecular diffusion dominates for
Pe << 1. Within the advection-dominated regime (larger Pe
values), two different mechanisms lead to dispersion because
of variable velocity within the rough-walled geometry: Taylor
dispersion and macrodispersion. Taylor dispersion results from
mixing induced by velocity variations across the fracture aper-
ture. Macrodispersion is caused by velocity variations in the
plane of the fracture that result from aperture variability. Be-
cause of their different origins, Taylor dispersion and macro-
dispersion exhibit different fundamental dependence on Pe,
with Taylor dispersion proportional to Pe? and macrodisper-
sion proportional to Pe.

Computational simulations of transport in fractures have
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incorporated the influence of either Taylor dispersion (i.e.,
parallel plate fractures [e.g., Hull et al., 1987; Ippolito et al.,
1994]) or macrodispersion (i.e., constant velocity across the
fracture aperture [e.g., Moreno et al., 1988; Thompson, 1991;
Thompson and Brown, 1991]) but not both. Recent experimen-
tal evidence [Ippolito et al., 1994] and scaling analyses [Roux et
al., 1998] suggest that dispersion in variable-aperture fractures
can be described as a sum of molecular diffusion, Taylor dis-
persion, and macrodispersion. Roux et al. [1998] also presented
scaling arguments suggesting that the Pe range within which
each dispersion process dominates is controlled by the mean,
variance, and correlation scale of the aperture field.

To date, there are no experimental or computational studies
that fully delineate the various regimes of solute dispersion in
variable-aperture fractures. Ippolito et al. [1994] experimentally
demonstrated the influence of two distinct dispersion regimes
(i.e., Taylor dispersion and macrodispersion). However, they
did not quantify the statistics of the aperture field in their
experimental fracture, making it difficult to generalize their
results. Keller et al. [1995, 1999] measured the longitudinal
dispersion coefficient D, over a range of Pe in two different
natural fractures in granite. They compared these results to D,
predicted using stochastic theory and the measured statistics of
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their aperture fields. However, large-scale aperture variability
(clearly evident in images of the aperture fields in both of their
fractures) likely dominated the dispersion process, partially
invalidating comparisons of experimental results to stochastic
theory. Dronfield and Silliman [1993] demonstrated a nonlinear
relationship between D, and Pe (D, « Pe™'*), based on
transport experiments in a sand-roughened analog fracture.
This result suggests that their experiments (run over a narrow
range of Pe) were in the transition zone between Taylor dis-
persion and macrodispersion.

In this paper we use a combination of physical experiments
and computational simulations to explore the Pe ranges of the
different dispersion regimes, as controlled by the mean, vari-
ance, and correlation scale of the aperture field. We also
present a theoretical expression for D, that combines Taylor
dispersion and macrodispersion. Our experiments use a light
transmission technique that yields high-resolution, accurate
measurements of both aperture fields and solute concentration
fields in transparent analog fractures. This approach offers the
advantages that the aperture field is measured at the time of
the experiment and dispersion of a dye pulse within the frac-
ture is followed directly, avoiding assumptions about mixing in
the inflow and outflow manifolds that are required when esti-
mating D, from breakthrough curves measured at the outflow.
Our computational model tracks particles through a variable
aperture fracture. The velocity field within the fracture is spec-
ified using a parabolic velocity profile across the aperture,
where the local, aperture-averaged velocity is obtained from a
numerical solution of the Reynolds equation. In addition to
advection within this three-dimensional velocity field, particles
undergo three-dimensional molecular diffusion. Thus the
mechanisms that cause both Taylor dispersion and macrodis-
persion are incorporated into the model.

We first performed experiments in a Hele-Shaw cell (flat,
parallel-plate fracture) and used the results to verify our com-
putational model in the absence of aperture variation and to
measure D,, for our solute. We then experimentally investi-
gated the range of Pe where the transition between macrodis-
persion and Taylor dispersion occurs in a rough-walled frac-
ture. To transcend experimental limitations and explore Taylor
dispersion and macrodispersion regimes over a wide range of
Pe for aperture fields with different statistics, we designed a
sequence of computational simulations. First, we compared
our modeling approach to the experiments to evaluate model
error and then simulated a much wider Pe range within a
synthetic aperture field with similar statistics to our experimen-
tal fracture. Finally, we simulated transport through two addi-
tional synthetic aperture fields to consider the influence of
aperture variance and correlation length on the Pe range over
which the different dispersion mechanisms dominate.

Our simulations support the Roux et al. [1998] scaling esti-
mates of the Pe range corresponding to the relative dominance
of Taylor dispersion and macrodispersion. The theoretical ex-
pression for D, , which is a sum of the macrodispersion coef-
ficient [Gelhar, 1987, 1993] and Taylor dispersion coefficient
and shares the fundamental assumptions of the Reynolds
equation, agrees closely with our computational results. How-
ever, for our rough-walled experimental fracture, theoretical
estimates of D, are significantly less than the experimentally
measured values (e.g., by 51% at Pe = 300). We believe that
this discrepancy between experiment and theory is primarily
due to the inability of the Reynolds equation, upon which the
stochastic theory is based, to fully describe the velocity field
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within a rough-walled fracture [e.g., Yeo et al., 1998; Nicholl et
al., 1999].

2. Theoretical Description of Dispersion
in Variable Aperture Fractures

In a parallel-plate fracture the primary mechanism causing
dispersion is the well-known phenomenon of Taylor dispersion
[Taylor, 1953; Aris, 1956]. The Taylor dispersion coefficient for
a parallel-plate fracture is [e.g., Fischer et al., 1979]

1b*
DL,Tay]or = m > (1)
where V' is the average velocity in the fracture, b is the fracture
aperture, and D, is the molecular diffusion coefficient.

For transport in a variable-aperture fracture, Gelhar [1987,
1993] developed a stochastic analysis of flow and solute trans-
port. Gelhar’s analysis assumes that the logarithm of the ap-
erture (3 = In b) is a statistically stationary, Gaussian random
field and that the flow within a variable-aperture can be de-
scribed by the Reynolds equation. The Reynolds equation is
based on the assumptions that aperture variations are rela-
tively smooth and that the velocity profile across the aperture
is parabolic, corresponding to local, plane Poisseuille flow [e.g.,
Zimmerman and Bodvarsson, 1996]. The stochastic analysis of
flow reveals that the effective hydraulic aperture is equal to the
geometric mean aperture. The stochastic transport analysis
neglects the influence of local dispersion and results in the
following expression for the macrodispersion coefficient:

Dy macro = O'fg)\[3 + I(O'f;)/a'fg]V = (T%;)\BV. 2)
In (2), o and A are the variance and integral scale of j,
respectively,

B=3+ I(aé)/a’%, 3)
1 (=
I(op) = Trf [exp (Rgg(u)) — 1] du, (4)

where Rgg(u) is the covariance function of 8 and u is the
nondimensional spatial separation variable, which equals the
spatial separation divided by A. Note that for an exponential
covariance, A is equivalent to the correlation length or the
length scale over which correlation in 8 persists. Also note that
V' in (2) is the mean solute velocity, equal to the mean flux
through the fracture divided by the mean aperture ((b))
[Gelhar, 1993]. Expression (2) incorporates the influence of
variations in the mean flow velocity within the fracture plane
but not the influence of Taylor dispersion. Equations (1) and
(2) demonstrate that D; ..., is proportional to V" and that
D rayior 1S proportional to 12, which suggests that at high flow
rates, Taylor dispersion may dominate over macrodispersion,
even in a variable-aperture fracture.

Expressions (1) and (2) may be rewritten in a nondimen-
sional form, in terms of Pe = V{(b)/D,,, where (b) is the mean
aperture and V' is the mean solute velocity:

DL,Taylnr/Dm = P€2/210 = aTaylr)r[)e2 (5)
DL,macro _ O’?ﬂ/\B Pe = 6
Dm - <b> e = amacroPe- ( )
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In (5) and (6), cpayior aNd @yaer, are nondimensional coeffi-
cients for the contributions of Taylor dispersion and macrodis-
persion, respectively. Note that (5) represents an “effective”
Taylor dispersion coefficient in a rough-walled fracture based
on the mean aperture and mean solute velocity. A stochastic
analysis of Taylor dispersion in a variable-aperture fracture is
required to establish the validity of such a representation of the
effective Taylor dispersion coefficient.

Roux et al. [1998] used scaling arguments to suggest three
primary dispersion regimes in variable-aperture fractures: mo-
lecular diffusion, “geometric” dispersion, and Taylor disper-
sion. The “geometric” dispersion regime corresponds to the
range of Pe where velocity variations in the plane of the frac-
ture dominate the mixing process and D, « Pe. We note that
this is equivalent to macrodispersion as described by (2) and
(6), and we use the latter term to refer to this regime in the
remainder of the paper. Roux et al. [1998] used scaling rela-
tionships for D, in the Taylor dispersion and macrodispersion
regimes to define the approximate Pe range within which ma-
crodispersion is the dominant dispersion mechanism. How-
ever, they did not use the precise relationships (5) and (6) to
quantify the macrodispersion and Taylor dispersion coeffi-
cients. Roux et al. [1998] also suggested that D, can be ex-
pressed as a sum of the three different components. This re-
sults in a first-order approximation of the total nondimensional
longitudinal dispersion coefficient of the form:

DL/Dm =T + amacroPe + aTaylorPez7 (7)

where 7 is the tortuosity for diffusion within the fracture, typ-
ically <1.0, reflecting the reduced rate of molecular diffusion
in a geometrically complex void space. For typical Pe ranges, T
is an insignificant contribution to D, /D,,, and may be dropped
from (7). Equation (7) suggests that o,,,.., Will be influenced
by the statistics of the aperture field and will increase with o
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Figure 1. Theoretical D, /D,, versus Pe for o, = 0.2 and

20, 7 = 1, and @p,y, = 1/210. For a0 = 0.2, D, /D,
transitions directly from the molecular diffusion regime (slope
equal to 0) to the Taylor dispersion regime (slope equal to 2),
whereas for larger a,,,.,, the macrodispersion regime (slope
equal to 1) becomes a distinct third regime.
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Figure 2. Theoretical D, /(V(b)) versus Pe for a,,,.,, = 0.2
and 20. This method of nondimensionalizing D, highlights the
three different dispersive regimes: molecular diffusion (slope
equal to —1), macrodispersion (slope equal to 0), and Taylor
dispersion (slope equal to 1).

and A/(b). Additionally, the Pe range over which macrodis-
persion can be expected to dominate is

1/Olmacro < Pe< amacro/aTaylor: (8)

where 7 is assumed to be approximately 1.

Figure 1 shows D, /D,,,, from (7), plotted against Pe for two
hypothetical values of a,,c0 (0.2 and 20) with 7 and apuy0,
equal to 1 and 1/210, respectively. The curve for o, ;o = 0.2
transitions directly from a molecular diffusion regime (slope
equal to 0) to the Taylor dispersion regime (slope equal to 2),
whereas the curve for a,,,., = 20 exhibits a large region,
O(107 ") < Pe < O(10*), where macrodispersion dominates
(slope equal to 1). To highlight these different dispersion re-
gimes, it is useful to plot D, in the nondimensional form
D, /(V{b)) against Pe (Figure 2). Figures 1 and 2 demonstrate
the importance of quantifying ..., to determine the Pe
range associated with the different dispersion regimes in a
given fracture.

To fully study the Pe range corresponding to different dis-
persion regimes requires a fracture that is long compared to A.
Theoretical results for a two-dimensional, isotropic, random
field with exponential covariance suggest that D, should reach
99% of its asymptotic value after the solute has traveled a
distance of ~20A [e.g., Dagan, 1984]. Similarly, for transport
between parallel plates, Taylor dispersion should become fully
developed at a distance of ~0.4(b)Pe [e.g., Fischer et al.,
1979]. Thus, to make a meaningful comparison of physical and
computational experiments to theory, we require a stationary
field with small A compared to the dimensions of the field. This
ensures that D, will become relatively constant within the
scale of the experiment. We also require a source whose trans-
verse dimensions extend over ~20A to eliminate nonergodic
effects. However, to avoid an increase in Taylor dispersion due
to the velocity variations at the lateral boundaries of the frac-
ture [e.g., Doshi et al., 1978], the source should also be narrow
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Table 1. Fracture Dimensions and Measured Aperture
Statistics

Hele-Shaw Rough-Walled
Dimensions, cm X cm 15.3 X 30.5 14.8 X 30.2
Dimensions (pixels X pixels) 972 X 1940 958 X 1958
Dimensions (A X A) e 336 X 686
Pixel size, cm 1.57 X 1072 1.54 X 1072
Minimum aperture, cm 1.72 X 1072 1.30 x 1073
Maximum aperture, cm 2.09 X 1072 3.85 X 1072
(b), cm 1.93 X 1072 221X 1072
g, Cm 527 x 1074 6.02x 1073
ap/{b) 2.73 X 1072 2.72 x 1071
A long axis,* cm 4.4 %1072
A short axis,* cm cee 44 x 102
RMS Error, % of mean 0.8 1.2

“In this study, A represents the integral scale calculated by numeri-
cally integrating [7=0'* p(r) dr, where p(r) = 1 — vy(r)/o} is the
correlation function and y(r) is the semivariogram. Previous studies
using similar fractures [e.g., Glass et al., 1998; Nicholl et al., 1999]
measured A as the separation length at which the semivariogram

reached the level of the sill (~0.08 cm).

compared to the width of the fracture. These issues were con-
sidered in the design of our experimental fracture, discussed in
detail in section 3.

In the remainder of the paper we use experimental and
computational results to measure values of ar,yo, aNd Apacro
as given by (5) and (6) and to investigate the corresponding
transitions between the different dispersion regimes. Section 3
discusses experimental results over the full Pe range obtain-
able with our experimental system; section 4 describes our
computational experiments both in the experimentally mea-
sured field and in synthetic fields generated with different afg
and A; and section 5 compares estimates of D, obtained from
physical and computational experiments to theoretical esti-
mates based on (7).

3. Experimental Investigations

We carried out experiments in two analog fractures: a Hele-
Shaw cell fabricated from two pieces of flat glass and a rough-
walled fracture fabricated by mating two pieces of textured
glass (fabrication details for both fractures are described by
Nicholl et al. [1999]). Table 1 presents the dimensions of each
of the fractures. Experiments in the Hele-Shaw cell provided a
test for our computational model as well as a measurement of
D,,. The rough-walled fracture was designed to have a station-
ary, isotropic aperture field with a correlation scale much
smaller than the dimensions of the fracture and values of o%
and (b) in the range of values reported for natural fractures.
These transparent analog fractures offered the additional ad-
vantage of allowing direct, full-field aperture and solute con-
centration measurements, with no disturbance of the fracture
between the aperture measurements and transport experi-
ments. Thus our experiments can be directly compared to
computational simulations and theoretical results.

A test cell frame supported the fractures and allowed light
from a feedback-controlled source to be transmitted through
the entire fracture (Figure 3a). An electronically cooled, 12-bit,
shuttered, charge-coupled-device (CCD) camera (2045 X 2033
pixels and 4096 gray levels) supported above the test cell mea-
sured the intensities of transmitted light. We measured aper-
ture fields and solute concentration fields using a light trans-
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mission technique first proposed by Glass et al. [1991]. The
details of the experimental system, the aperture measurement
technique, and a method for quantifying aperture errors are
presented by Detwiler et al. [1999].

3.1. Measurement Techniques

A light-absorbing dye (Warner Jenkins FD&C Blue #1 dye)
was used both as a tracer during transport experiments and as
a light-absorbing solute for aperture measurement. The Beer-
Lambert law describes the absorbance of monochromatic light
by a dyed solution as a function of the distance through the
solution (b) and the dye concentration (C). According to the
Beer-Lambert law the absorbance at each pixel (identified
using a double subscript “ij”, where i andj refer to the row and
column index of the pixel) within a two-dimensional field is
given by

Aij =1In (ICL,/]dyeU) = MCijbij, )

where A;; is the absorbance, I, and /4, are the intensities
transmitted through a clear and a dyed solution, respectively, w
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Figure 3. (a) Schematic plan view of fracture cell and plumb-
ing layout. (b) Cross section X-X' of rough-walled fracture. (c)
Cross section X-X' of Hele-Shaw cell.
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is the absorptivity of the solute, C;; is the dye concentration,
and b,; is the thickness of the absorbing layer or the local
aperture. Images of a fracture filled entirely with clear and
dyed solutions yield arrays of intensity measurements, /, and
Lage,» for use in (9). Normalizing (9) by its mean then gives an
expression for the aperture:

by = A b)(A), (10)

where (b) is the independently measured mean aperture and
(A4) is the mean (over all ij) of 4,;. We determined (b) by
injecting a known volume of fluid into the fracture and mea-
suring the area occupied by the fluid. Once b,; is calculated for
the entire fracture, we can measure concentrations (C;;) using
images taken during transport experiments by directly applying
).

If the light source is polychromatic, as is the case with our
measurement system, the linear relationship between absor-
bance and concentration (9) is only approximate. Despite ef-
forts to remove the influence of nonlinear absorbance on our
measurements by reducing the measured wavelengths with a
band-pass filter (Andover Corporation, 630 nm * 5 nm) on the
camera lens, some nonlinearity remained. Slight nonlinearity
in dye absorbance results in aperture measurement errors that
increase with dye concentration, but reducing dye concentra-
tion results in an increase in random errors due to signal noise
caused by the smaller signal range (i.e., difference between / o
and /4. ). We reduced the influence of random errors by
averaging 80 images of each field and used the procedure
described by Detwiler et al. [1999] to determine the dye con-
centration for measuring /4. (0.05 g/L) that resulted in the
minimum total error. We estimated root-mean-square (RMS)
aperture measurement errors of 0.8 and 1.2% of the mean
aperture for the Hele-Shaw cell and the rough-walled fracture,
respectively.

For transport experiments we could not average multiple
images, so we used a higher dye concentration that utilized the
full dynamic range of the CCD camera. The use of a higher dye
concentration reduces the influence of noise on measurements
of C,; thus increasing the sensitivity of our measurements,
especially in regions of low concentration (i.e., solute plume
tails). However, a higher dye concentration also results in
nonlinear absorbance in regions of high concentration. We
accounted for the influence of nonlinear absorbance on con-
centration measurements by fitting the following function to a
series of measurements made at different dye concentrations
(0.025, 0.05, 0.10, 0.15, 0.20, and 0.25 g/L):

All = ei/C,‘//(fij + Cij)' (11)

In (11), e; and f;; are fitting parameters determined at each pixel
in the array. Note that for low concentrations (i.e., C;; << f;),
(11) reduces to a linear relationship similar to (9). To obtain
the concentration at each location, we use the fitted parame-
ters e;; and f;; and solve (7) for C;;:

Ci= (file))/(1/A; — 1/ey).

The maximum RMS concentration error at any location is
~0.023C,(C, = 0.25 g/L), based on an analysis discussed in
detail in the appendix.

(12)

3.2. Measured Aperture Fields

Table 1 provides a summary of the dimensions and statistics
of the two aperture fields. The aperture field for the Hele-
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Figure 4. Semivariograms (vy) of the two experimental frac-
tures and synthetic field 1. The semivariogram for the rough-
walled fracture demonstrates the stationary, isotropic nature of
the aperture field. The semivariogram for the Hele-Shaw cell
indicates a relatively strong trend across the width of the cell
and a milder trend along the length of the cell. The semivar-
iogram for field 1 is very similar to the rough-walled fracture,
demonstrating the similarity between the correlation structure
of the synthetic and experimental field.

Shaw cell exhibits a narrow distribution (variance, o7 =
2.78 X 1077 cm?) about its mean ((b) = 0.0193 cm). The i
and j semivariograms (long and short principal axes, respec-
tively) for the Hele-Shaw cell (Figure 4) show a relatively
strong trend along the short axis and a milder trend along the
long axis. Although the glass plates were flat, clamping pres-
sure resulted in smaller apertures along the edges of the cell
(~0.018 cm), larger apertures along the centerline of the cell
(0.020 cm), and uneven compression of the plastic shims along
the length of the fracture (Figure 3b). These features led to
apparent large-scale trends in the aperture field as evident in
the variograms shown in Figure 4.

The aperture field of the rough-walled fracture has a wider,
negatively skewed distribution (see Figure 7), with o} =
3.62 X 107° cm? and (b) = 0.0221 cm. Nicholl et al. [1999]
present an image of a portion of the rough-walled aperture
field. The semivariograms for the rough-walled fracture (Fig-
ure 4) indicate that the field is isotropic and reaches the level
of the sill at a separation of ~0.08 cm. The semivariograms
also indicate a slight negative correlation at separations be-
tween ~0.08 cm and ~0.18 cm caused by the repetitive nature
of the individual fracture surfaces. Numerically integrating the
correlation functions of §,; yields estimates of A of ~0.044 cm
along both the long and short axes.

3.3. Transport Experiments

We conducted a series of transport experiments in each
fracture over a range of flow rates. To facilitate reproducibility,
a computer-controlled flow through the fracture by activating/
deactivating solenoid valves measured flow rates by recording
outflow mass at equal intervals and triggered the CCD camera
to acquire images at specified times. Inflow and outflow man-
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Table 2. Summary of Experiments and Results

Measured Mean
Flow Rate, Velocity, Reynolds Peclet D,,
Fracture Experiment cm’/s cm/s Number ~ Number cm?/s
Hele-Shaw cell 1 0.0121 0.043 0.08 147 6.26 X 1079
2 0.0220 0.077 0.15 264 2.01 X 107
3 0.0288 0.100 0.19 343 327 X 107
4 0.0348 0.121 0.24 415 478 X 1079
Sa 0.0421 0.146 0.28 500 6.96 X 107
5b 0.0419 0.146 0.28 501 7.05 X 1079
5c 0.0417 0.145 0.28 499 7.10 X 10
6 0.0494 0.171 0.33 589 9.56 X 107
7 0.0571 0.199 0.39 682 1.28 X 10792
8 0.0617 0.214 0.42 737 1.48 X 1072
Rough-walled fracture 1 0.0114 0.037 0.08 143 2.08 X 107
2 0.0147 0.048 0.11 186 2.87 X 107%
3 0.0190 0.060 0.13 236 4.06 X 107
4 0.0287 0.090 0.20 352 7.80 X 107
5a 0.0340 0.108 0.24 421 9.59 x 107
5b 0.0340 0.108 0.24 419 9.52 X 107
5¢ 0.0338 0.107 0.24 419 9.59 x 107
6 0.0403 0.128 0.28 498 1.26 X 1072
7 0.0467 0.147 0.32 572 1.60 X 10792
8 0.0534 0.168 0.37 656 1.98 x 1072
9 0.0612 0.193 0.43 751 246 X 107

ifolds provided uniform pressure across the width of the two
ends of each fracture, and no-flow boundaries were applied to
the sides of each fracture (Figure 3). A constant head reservoir
at the inflow and a stabilized drip point at the outflow created
steady, reproducible flow rates through the fracture. Table 2
summarizes the flow rates for each experiment. The CCD
camera required ~11 s to write each image to disk, so we chose
the maximum flow rate for each fracture so that we could
acquire at least 10 images (i.e., concentration fields) during an
individual transport experiment. The minimum flow rate rep-
resents the reproducible limit achievable using the constant
head reservoirs of our system.

The initial condition for each experiment is shown in the first
frame of Plates la and 1b. This initial condition provides two
advantages: a known initial concentration distribution and neg-
ligible edge effects caused by the no-flow boundaries of the
fracture. We pumped a 0.375 g/L slug of solute through the
injection port in the center of the inflow manifold (Figure 3a)
into the center of the inflow end of the fracture. We then
flushed the inflow manifold by pumping clear water into the
two ends (i.e., inflow and waste line in Figure 3a) and out
through the injection port. After flushing the inflow manifold
with clear water, we stopped the pump, closed the valve at the
waste side of the inflow manifold, and opened the outflow
manifold, initiating flow through the fracture under constant
gradient. In designing the transport experiments we considered
the possible influence of gravitational effects on dispersion in
the fractures. Relatively small density gradients can lead to
enhanced dispersion at early times (i.e., before density gradi-
ents are reduced by dispersion) [e.g., Reejhsinghani et al., 1966].
Our results (discussed in section 3.5) confirm that density ef-
fects were negligible.

Plates 1a and 1b show sequences of three solute concentra-
tion fields from experiments in the Hele-Shaw cell and the
rough-walled fracture. The concentration fields demonstrate
the initial condition in the first frame and the effect of disper-
sion on the plumes in the two successive frames. The role of
aperture variability in enhancing dispersion is clearly evident in

Plate 1b. The progressive reduction in the peak concentration
is also evident in Plates 1a and 1b.

3.4. Analysis of Concentration Fields

The product of a measured solute concentration field and
the measured aperture field yields the solute mass at each pixel
in the field, and summation over the entire field yields the total
mass within the system. The total mass measured in each of the
fields obtained during any of the experiments varied by no
more than *3% from the total mass averaged over all fields
from a single experiment. Good mass conservation further
confirms the accuracy of our measurement techniques. The
rates of change of the first and second spatial moments (M,
and M, respectively) of solute mass in the flow direction with
time are equivalent to the mean solute velocity (7)) and are
twice the longitudinal dispersion coefficient (2D, ), respec-
tively [e.g., Aris, 1956]. We calculated M, for each solute mass
field using

nx ny

nx ny
My=2 > Cijbir‘xif/ > 2 Ciby,
i=1 j=1

i=1 j=1

(13)

where Cy;, b;;, and x,; are the concentration, aperture, and x
coordinate at pixel ij, respectively, and nx and ny are the
number of measurements in the x and y directions. We then

calculated M,, for each field using

nx ny nx ny
Moo= 2, D) Cobylx; — Mlx)z/ > 2 Ciby (14)

i=1 j=1 i=1 j=1

We then estimated D, and V' by plotting M, and M, against
time. Note that this method of measuring D, requires no
assumptions about the initial condition for the experiment.
The initial concentration distribution is directly measured. This
approach overcomes the difficulties involved in using break-
through curves and an analytical solution to the one-
dimensional advection-diffusion equation for estimating trans-
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Inflow Manifold
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Plate 1. A portion of three concentration fields measured during (a) an experiment in the Hele-Shaw cell,
(b) an experiment in the rough-walled fracture, and (c) a simulation in the rough-walled fracture. Each field
represents a 3 cm X 9 cm region of the fracture centered on the first spatial moment of solute mass in the x
direction and the center of the fracture in the y direction. In the Hele-Shaw cell, M, = 1.1, 6.6, and 12.0 cm
in the three frames and in the rough-walled fracture, M,, = 1.6, 5.4, and 9.4 cm in the three frames. In the
Hele-Shaw cell, the effect of Taylor dispersion is evident as growth of the plume in the flow direction with little
spreading perpendicular to the flow direction. In the rough-walled fracture, the enhanced dispersion caused
by aperture variability is evident.
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Figure 5. Nondimensional dispersion coefficient (D,/D,,)
plotted against the Peclet number (Pe) for experiments in
both fractures. The curves through the data points are the
result of fitting (7) to the data. Table 3 lists the fitted param-
eters for the rough-walled fracture. The error bars represent
the possible range of D, estimates resulting from concentra-
tion measurement errors (see the appendix for a discussion of
errors).

port parameters. The latter approach assumes initial
conditions that are typically difficult to verify, and mixing in the
inflow and outflow systems leads to inaccuracies in estimates of
transport parameters.

3.5. Experimental Results

Experiments in both the Hele-Shaw cell and the rough-
walled fracture resulted in linear plots of M, versus time from
the initial concentration field until solute began to exit the
fracture. This indicates that the conditions for full develop-
ment of both macrodispersion and Taylor dispersion described
in section 2 were met at very early times in our experiments.
On the basis of theory presented in section 2, the distances
required for development of Taylor dispersion (~0.4(b)Pe)
and macrodispersion (20A) are ~0.9-7.0 cm and ~0.9 cm,
respectively. Linear plots of M, versus time over the full range
of experimental flow rates also confirm that the influence of
natural convection due to density gradients was negligible; that
is, no enhanced dispersion was observed at early time (i.e.,
faster M,, growth), as would be expected with significant nat-
ural convection [e.g., Stockman, 1997].

We used the procedures described in section 3.4 to calculate
the mean solute velocity and dispersion coefficient for each
experiment (Table 2) (the appendix provides a detailed discus-
sion of errors in our estimates of D, ). For both fractures we
demonstrated the reproducibility of our experiments by re-
peating a number of experiments at one flow rate (see exper-
iments 5a, 5b, and Sc in Figure 5 and Table 2). Figure 5 is a plot
of D, /D,, versus Pe for each set of experiments. The range of
Pe values covered by our experiments extends from ~100 to
800. We determined D,,, to be 5.67 X 10~°¢ cm?/s by fitting (1),
the theoretical expression for Taylor dispersion between par-
allel plates, to the experimental results from the Hele-Shaw
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cell. Although, as discussed in section 3.3, the aperture field in
the Hele-Shaw cell is not perfectly uniform (because of bowing
of the glass plates), the plates are essentially parallel along the
central portion of the cell traversed by the solute plume. Note
that this method is analogous to an accepted method for mea-
suring D,,, that involves measuring the dispersion of a solute in
laminar flow through a tube and using the theoretical expres-
sion for Taylor dispersion in a tube to calculate D,, [e.g.,
Cussler, 1984].

In the rough-walled fracture the relationship between
D, /D,, and Pe is also nonlinear (Figure 5), indicating that
Taylor dispersion contributes to dispersion over the Pe range
of our experiments. Dropping 7 and fitting (7) to our experi-
mental data results in estimates of «,,., = 1.87 = 0.15 and
Qrayior = (522 * 0.26) X 107°. These results, with (8), allow
us to estimate the range over which macrodispersion will be
the dominant dispersion mechanism as 0.5 < Pe =< 350.
Because the range over which we can perform experiments in
our current system is limited (100 < Pe =< 800), we cannot
investigate the full range of Pe dependence. Additionally, we
are limited to a single Ufg, A, and (b) unless we design and
fabricate additional aperture fields for experimental investigation.

4. Computational Investigations

The theory presented in Section 2 suggests that the nature of
the Pe dependence of D, will depend on aperture statistics
((b), o, and A). To investigate the influence of Pe and ap-
erture variability on D, over a wider range of parameters (Pe,
(b), o, and A) than is possible in a single experimental frac-
ture, we simulate flow and transport through computer-
generated aperture fields. Measured aperture and concentra-
tion fields from our physical transport experiments allow us to
first test the computational model through direct comparison
before proceeding to additional computational studies.

4.1. Flow and Transport Solvers

To simulate the velocity field within the fracture, we used the
flow solver developed by Nicholl et al. [1999], which uses a
finite difference discretization of the Reynolds equation. We
used the harmonic average (found by Nicholl et al. [1999] to
agree more closely with experimental results than several other
variations) to define the transmissivities between adjacent grid
blocks. For comparison with our experimental results we used
a grid that corresponded to the measured aperture field (e.g.,
958 X 1958 with dimensions of each grid block equal to
0.0154 X 0.0154 cm); this is approximately the same discreti-
zation used by Nicholl et al. [1999] for this fracture.

Nicholl et al. [1999] compared flow computations made with
this flow solver to saturated flow experiments in the two frac-
tures used in this study, as well as a third fracture fabricated by
mating a single piece of rough glass with a single piece of
smooth glass. Their comparison indicated that the Reynolds
equation (and other two-dimensional variants that account for
convergence/divergence of flow and tortuosity of the center-
line) overestimates flow through the rough-walled fracture
used in the current study by ~26%. High-resolution simula-
tions on a subset of the entire field indicated that increasing
the resolution of aperture measurements, and subsequently the
finite difference grid, had a negligible influence (~2%) on the
results. Thus they concluded that it may be necessary to solve
the three-dimensional Stokes equations in situations where
improved accuracy is required. Because the Reynolds equation
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overestimates flow under a specified gradient in rough-walled
fractures, we specified the mean flux to generate the flow fields
for transport simulations resulting in simulated mean solute
velocities that closely matched our experimentally measured
means.

We simulated solute transport using a three-dimensional
random-walk particle-tracking algorithm. We used the same
discretization of the domain used for solving the Reynolds
equation and assumed that the aperture within each grid block
was constant. This is consistent with experimental aperture
measurements that represent an average of the aperture within
each pixel. In addition, our measurement system only provides
measurements of the local aperture and not deviations of the
local aperture midpoint from the center plane of the fracture.
For the transport simulations we assume that the fracture is
symmetric about the center plane to approximate the actual
fracture geometry. However, it should be noted that when the
assumptions underlying the Reynolds equation are satisfied,
the flow field depends only on the aperture field and not
explicitly on the geometry of the fracture surfaces. Particle
displacements in each time step consisted of a two-dimensional
advective displacement (in the x, y plane) and a three-
dimensional random diffusive displacement (x, y, z, where z is
across the aperture) reflecting the role of molecular diffusion.
We calculated the advective displacements using the local gra-
dients specified by the solution to the Reynolds equation and
imposing a parabolic velocity profile across the local aperture.
In the absence of diffusion, particles maintained their relative
z position, creating a pseudoadvection in the z direction when
a particle moved between adjacent grid blocks with different
apertures. Particles colliding with the fracture wall because of
diffusion across the aperture were reflected back into the frac-
ture. Adaptive time stepping ensured that the three-
dimensional velocity field was well sampled by each particle.
The minimum of the following three criteria defined the length
of each time step: the time required for a mean diffusive
displacement of 5% of the local aperture and the times re-
quired for a particle traveling at the maximum local velocity
(i.e., along the aperture centerline) to traverse 50% of the local
grid block in both the x and y directions.

4.2. Comparison of Results From Physical Experiments
and Computational Simulations

Accurate, full-field measurements of both aperture and con-
centration allow us to directly compare the results of the com-
putational simulations to the experimental data. We specified
initial particle locations based on the initial conditions in our
experiments. The initial conditions were generated by taking
the initial solute mass field from an experiment and assigning
a specific mass to each particle (5.0 X 107'° g for the Hele-
Shaw cell and 2.5 X 107'° g for the rough-walled fracture)
resulting in a total of ~3.0 X 10 particles for the Hele-Shaw
cell and ~3.5 X 10* particles for the rough-walled fracture.
The particles were then randomly distributed within the grid
block specified by their initial location. Plate 1c shows images
of simulated plumes that correspond to the experimentally
measured plumes in the rough-walled fracture in Plate 1b. For
the simulations in Plate 1c we used ~3.5 X 10° particles (and
adjusted the mass accordingly) to more closely approximate
continuous concentration fields. Although the particle simula-
tion fields are noisier, these images demonstrate excellent
qualitative agreement of solute spreading between the simula-
tions and experiments. The simulated solute plumes also ex-
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Figure 6. Comparison of D, /D, versus Pe for experiments
and simulations in the Hele-Shaw cell and the rough-walled
fracture. The curves through the Hele-Shaw cell data represent
(5), the theoretical expression for Taylor dispersion. The
curves through the data represent (7) fitted to each data set
(neglecting 7). The fitted parameters are presented in Table 4.

hibit slightly higher concentrations than the experimental
plumes at the same locations. This is probably due to the
underestimation of D, by the simulations that is discussed in
detail below. Note that increasing the number of particles by 2
orders of magnitude to generate Plate 1c resulted in less than
a 1% change in estimated D, . This indicates that we used a
sufficient number of particles in our simulations to minimize
variability in our estimates of D, .

To quantitatively compare the results of the simulations to
the experiments in both fractures, we plot D, /D,, against Pe
(Figure 6). As with simulations of flow in the Hele-Shaw cell
[Nicholl et al., 1999], we expect that simulations of transport
will agree closely with experimental results. Fitting (5) to
D, /D,, measured from the simulations in the Hele-Shaw cell
yields apyy,, = (4.721 = 0.002) X 1073, which differs by less
than 1% from the theoretical value of 4.762 X 103, Dropping
7 and fitting (7) to the simulation results in the rough-walled
fracture yields estimates of @, = 1.01 = 0.10 and ovpyy, =
(4.81 = 0.16) X 103, which are 46% and 8% less than the
experimentally measured values, respectively. On the basis of
the results presented by Detwiler et al. [1999], who investigated
the influence of aperture measurement errors on estimates of
Qaero from simulations, it is unlikely that these discrepancies
are due to aperture measurement error. Underestimation of
the magnitude of D, is consistent with the inability of the
Reynolds equation to fully describe the three-dimensional ve-
locity field. Our simulations assume a local parabolic velocity
profile across the aperture, but simulations of Stokes flow in
two-dimensional variable aperture channels [e.g., Koplik et al.,
1993; Brown et al., 1995; Gutfraind et al., 1995] have shown that
velocity profiles are not uniformly parabolic throughout the
channel.

Presumably, solving the three-dimensional Stokes equations
will result in improved estimates of dispersion in the fracture.
However, despite underestimating the magnitude of D, , our
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Table 3. Comparison of Statistics and Macrodispersivity for Synthetic and Experimental

Aperture Fields

Aperture Field (b), cm Ty, CM op A, cm I(o})/ 0" Qnacro
Field 1 0.022 0.0060 0.073 0.035 1.04 0.47
Field 2 0.022 0.0060 0.073 1.8 1.04 23
Field 3 0.022 0.019 0.56 0.035 1.32 3.9
Experimental 0.022 0.0060 0.096 0.044 1.05 0.78

“For the aperture fields used in this study, Rpg(s) = oj[1 — (wr*/161%)] exp [—(7r*/161%)] was

used to derive these values.

simulations closely reproduce the functional dependence of
D, on Pe evident in the rough-walled fracture. We believe this
is because over the Pe range for which Stokes flow is valid,
errors in the velocity field obtained by solving the Reynolds
equation are proportional to the mean velocity (and hence
Pe). Thus, in this range, estimates of D, from simulations of
transport should reliably reflect the actual Pe dependence of
D, though they may underestimate the magnitude of D, .

4.3. Computational Simulations Investigating the Influence
of ¢, and X Over a Wide Range of Pe

Though the experiments and simulations in the rough-
walled fracture both demonstrate the influence of Taylor dis-
persion on D, , neither reach the Pe range where macrodis-
persion becomes negligible (i.e., D, « Pe?) as predicted by
the theory presented in section 2. Additionally, our experimen-
tal aperture field embodies a single af; and A. In this section we
use numerical simulations to investigate the role of aperture
variability (i.e., o and \) over a wider Pe range than was
possible experimentally.

As discussed in section 2, simulations at large values of Pe
require fractures that are somewhat longer than 0.4¢(b)Pe (the
distance required for Taylor dispersion to become fully devel-
oped). To investigate the influence of aperture variability
(quantified by (b), 0%, and A) on dispersion over a wide range
of Pe, we generated three correlated random aperture fields
that were significantly longer (7.9 cm X 169.9 cm and 512 X
11,000 grid) than the experimental field: field 1 with statistics
(i.e., (b), 0,23, and \) similar to those of the experimental field
and fields 2 and 3, with different values of A and o3, respec-
tively (Table 3). These longer fields satisfy the conditions for
the full development of dispersion and thus allow meaningful
comparison of theoretical results to computational simulations
over a wide Pe range.

We generated lognormally distributed aperture fields with a
“hole-type” covariance function that captured the negative
correlation caused by the slight periodicity of the experimental
field. The spectral density function corresponding to this co-
variance function is

160’%(02/\4 —4N’w?
- exp s (15)

Sﬁﬁ(wx’ wy) = ,7_‘,3

where , and o, are the wave numbers in the x and y direc-
tions, respectively, ® = Vw; + o, and A is the integral scale
of the corresponding correlation function.

We used a fast Fourier transform algorithm to obtain
B(x,y), anormally distributed, correlated random field. Using
this field, we generated the three synthetic, lognormally dis-
tributed, aperture fields (b(x, y)) with statistics presented in
Table 3. Figure 7 compares the aperture distributions of the
three synthetic fields and the experimental field. Synthetic field

1 has the same o, and (b) as the experimental field but exhibits
a slightly higher peak and less spread than the experimental
field, because of the positive skew and long tail of the lognor-
mal distribution. Note that although o, is equal for the two
fields, o (and thus o) is slightly different because of the
different shapes of the two distributions. Figure 4 shows the
normalized semivariograms of field 1 and the experimentally
measured rough-walled fracture, demonstrating that field 1 is
stationary and isotropic and has approximately the same cor-
relation scale as the experimental field. Field 2 is identical to
field 1, except that the length of the side of each grid block, and
thus A, was increased by a factor of 50. We generated field 3 by
scaling the same B(x, y) field used to generate field 1 to
increase o, by a factor of 7.7 (or 1007). All three fields include
a negative correlation at separations of ~2A to ~4.5A, as in the
experimental field.

We simulated transport in each of the three random fields in
the range 1 < Pe < 5 X 10*. Note that Pe = 5.0 X 10*
corresponds to a Reynolds number (Re = V{(b)/v) of 31.8.
Experimental data presented by Nicholl et al. [1999] suggest
that inertial forces in a fracture similar to field 1 will begin to
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Figure 7. Comparison of aperture distributions for experi-
mental fracture and the three synthetic fields (fields 1, 2, and
3). Synthetic fields 1 and 2 have the same variance as the
experimental field. The synthetic fields exhibit a positive skew
because of the lognormal distribution, and the experimental
field exhibits a negative skew. Field 3 has a larger variance and
the same mean as the other fields, resulting in a higher per-
centage of small aperture values.
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influence flow in the range 1 < Re < 10. Thus these simu-
lations surpass the range in which Stokes flow is expected to be
valid. As a result, the simulation results for Pe > 2 X 10*
should be interpreted with caution. For all the simulations in
the three synthetic fields we used line source initial conditions
spanning only the middle 2.5 cm (~70A) of the fracture. This
guaranteed that no particles reached the lateral boundaries
before D, became fully developed. As expected, for simula-
tions at higher velocities (larger Pe) the plume required
greater travel distances for Taylor dispersion to become fully
developed. At the largest values of Pe reported here (~5.0 X 10%),
dM,./dt reached a constant value at a distance of approxi-
mately 70 cm (40% of the length of the field or ~0.06(b)Pe).

Figure 8 shows D, /(V(b)) plotted against Pe for simula-
tions in each of the three synthetic aperture fields, together
with theoretical results that will be discussed in detail in section
5. At large Pe all three sets of simulations illustrate the pro-
gressive dominance of Taylor dispersion, where D, =« Pe?.
However, simulations in each field exhibit markedly different
behavior at intermediate values of Pe (i.e., ~10° < Pe < 10°%).
The simulations in field 2 (large A) indicate D, <« Pe over
almost this entire intermediate range of Pe values, whereas the
simulations in field 1 indicate almost no range where D, « Pe.
Simulations in field 3 (large o) indicate D, o Pe in a Pe
range that is between the corresponding Pe range in fields 1
and 2. It is clear that as o% and/or A increase, there is a
corresponding increase in the magnitude of « and hence
a larger range of Pe in which D, « Pe.

macro
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Figure 8. Results of simulations (data points) and theoreti-
cal expressions (lines) in fields 1, 2, and 3. The theory predicts
identical small and large Pe behavior for all three fields, but at
intermediate values of Pe where macrodispersion dominates,
the influence of o7 and A on the magnitude of macrodispersion
is evident. The simulations agree closely with theory for fields
1 and 2; deviations for field 3 are likely due to the increase in
o (the theory assumes small 03).
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Figure 9. Comparison of theoretical results for the rough-
walled fracture and synthetic field 1 to experimental and com-
putational results. The close agreement between theory and
simulations in both fields indicates that when the assumptions
of the Reynolds equation are valid for a given fracture, the
theoretical expression described by (7) provides a good esti-
mate of the total dispersion coefficient.

5. Comparison of Theory to Physical Experiments
and Computational Simulations

The results of the transport simulations over the range
0(10°) < Pe < O(10°) (Figure 8) exhibit the three distinct
dispersion regimes suggested by Roux et al. [1998]: molecular
diffusion, Taylor dispersion, and macrodispersion. In this sec-
tion we compare the theoretical estimates of oy, aer0 aNd Crygior
obtained from (5) and (6) to estimates from the experimental
and computational results.

To calculate the theoretical estimates of «,,.,, for the ex-
perimental rough-walled fracture and the three synthetic fields,
we applied (6) to estimates of /(o) calculated for each field
by numerically integrating the corresponding covariance func-
tion. Figure 9 shows D, /D,, plotted against Pe for the exper-
imental field (experimental, computational, and theoretical re-
sults) and field 1 (computational and theoretical results). For
field 1, theoretical and computational results are almost iden-
tical, with a discrepancy of <1% at Pe = 300. This indicates
that (6) and (7) are accurate in a variable aperture fracture
when the underlying assumptions (local cubic law flow, a sta-
tionary, lognormally distributed aperture field, and small o)
are satisfied, as is the case for the simulations in field 1. The
theoretical estimates of D, /D,, for the experimental fracture
are smaller (by ~9% at Pe = 300) than the estimates from the
computational results (Figure 9). This discrepancy, which is
larger than that observed for field 1, is likely because the
aperture field is not lognormally distributed, as this is the
primary discrepancy between the assumptions of the theory
and the computational simulations in this field. Another pos-
sible reason may be that the simulations were carried out in
one realization, whereas the theory predicts ensemble average
behavior. However, the relatively large source width (~28A)
for our single realizations leads us to expect closer agreement
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Table 4. Fitted Values of ay,acr0 and diyyyo, for Experiments
and Simulations and Theoretical Values Based on Equations
(2) and (6)

Xmacro aTay]or
Hele-Shaw
experiments NA 0.00476 = 0.00004
simulations NA 0.00472 = 0.00002
theory NA 0.00476
Rough wall
experiments 1.87 = 0.15 0.00522 = 0.00026
simulations 1.01 = 0.10 0.00481 = 0.00016
theory 0.77 0.00476
Field 1
simulations 0.41 =0.20 0.00472 = 0.00033
theory 0.47 0.00476

NA is not applicable. Tolerances are 95% confidence intervals for
the fitted parameters.

with the ensemble average theory. The experimental results for
D, /D,, in the experimental field are substantially larger than
the theoretical estimates (by ~51% at Pe = 300). Of this 51%
discrepancy, about 9% can be explained by the deviation be-
tween the computational and theoretical results just noted.
Thus, by process of elimination, the remaining portion of the
discrepancy between theoretical and experimental values
(~42%) reflects the influence of deviations from the Reynolds
equation in the flow field.

The theoretical value of ar,y,, (2) for each field is 4.76 X
107. This value is 9% smaller than that obtained by fitting (7)
to the experimental results and is 1% less than that obtained
from the simulations (Table 4). The small discrepancy between
the theoretical o, ., and the value estimated from simula-
tions indicates that calculating an effective D; ., based on
the mean aperture and flow velocity provides a good estimate
of the influence of Taylor dispersion in the rough-walled frac-
ture. The small discrepancy between the experimentally mea-
sured oep,y., and the theoretical value indicates that deviations
from the Reynolds equation do not influence ar,y,, as much
as they influence o, ,¢0-

Figure 8 shows D, /(V(b)) plotted against Pe for both the-
oretical and computational results for fields 1, 2, and 3. There
is excellent agreement between the theoretical results and sim-
ulations because both employ the Reynolds equation to de-
scribe flow through a rough-walled fracture. Also, the aperture
fields are lognormally distributed, as assumed in the derivation
of the theoretical results. Even though the simulations were
carried out in a single realization, the good agreement with the
ensemble average theory is probably due to the large source
sizes (~70A) transverse to the mean flow. It may also be noted
that the agreement between simulations and theory is poorer
in field 3 than in fields 1 and 2. This is likely because o7 is
larger for field 3, and there is an assumption of small o7
implicit in the theoretical results.

In summary, comparing theoretical results to experimental
and computational results demonstrated the following: (1) ex-
cellent agreement between theory and simulations in synthetic,
lognormal, and random fields due to the consistency of the
assumptions (i.e., both are based on the Reynolds equation);
(2) small discrepancies between simulations and theory for the
rough-walled experimental fracture, likely due to the assump-
tion of a lognormal aperture distribution implicit in the theory;
(3) poorer agreement between theoretical and experimental
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results, highlighting the additional influence of deviations of
the actual velocity field from that described by the Reynolds
equation, on estimates of D, ; (4) good agreement between
theoretical and experimental/computational estimates of o~
1or indicating that the “effective” Taylor dispersion coefficient
defined by V*(b)?/(210D,,) is a good estimate of the influ-
ence of Taylor dispersion in a variable aperture fracture; (5)
good agreement between theory and numerical simulations for
fields with different o and A, indicating that when the assump-
tions of the Reynolds equation are met, (8) effectively charac-
terizes the Pe regimes where different dispersion mechanisms
dominate.

6. Concluding Remarks

We have described a series of physical and computational
transport experiments designed to clarify the Peclet number
(Pe) dependence of the longitudinal dispersion coefficient
(D,) in a saturated, variable-aperture fracture. During phys-
ical experiments in two analog glass fractures (a parallel plate
fracture (Hele-Shaw cell) and a rough-walled fracture), aper-
ture and concentration fields were measured using an accurate
light transmission technique. Computational simulations in the
measured aperture fields were compared to experimental re-
sults and the role of aperture variability on the Pe dependence
of D, was investigated through additional simulations in three
synthetically generated random aperture fields. The flow fields
for the transport simulations were generated by solving the
Reynolds equation in each aperture field. The three-
dimensional velocity fields within the fractures incorporated
parabolic velocity profiles across the aperture, with magnitudes
based on the local aperture-averaged velocity obtained from
the Reynolds equation solution. A three-dimensional particle-
tracking algorithm was then used to simulate solute transport.
This approach enabled us to represent the influence of both
macrodispersion and Taylor dispersion in contrast to previous
approaches, which have isolated one or the other of these
mechanisms.

Excellent agreement between simulations and experiments
in the Hele-Shaw cell verified our computational model under
simple conditions. In the rough-walled fracture both physical
and computational experiments demonstrated a nonlinear re-
lationship between D, and Pe. In particular, our results con-
firmed two of the distinct dispersion regimes suggested by Roux
et al. [1998]. At intermediate values of Pe, macrodispersion
dominated (D, o Pe), and at large Pe values, Taylor disper-
sion dominated (D, o« Pe?). We predicted D, throughout
this range using a simple theoretical model that represents the
total longitudinal dispersion coefficient as the sum of a mac-
rodispersion coefficient based on the stochastic analysis of
Gelhar [1987, 1993] and a Taylor dispersion coefficient based
on the mean solute velocity and the mean aperture. This the-
oretical model, which also incorporates the assumptions inher-
ent in the Reynolds equation, agreed closely with simulations
in synthetic, lognormally distributed aperture fields. However,
though the theoretical model and numerical simulations cap-
tured the Pe dependence of D, in the experimental fracture
quite well, they underestimated the magnitude of D,. We
demonstrated, by process of elimination, that this discrepancy
is primarily due to inadequacies of the Reynolds equation.
Thus the ability of the theoretical model to describe dispersion
will be closely tied to the validity of the Reynolds equation in
a given fracture.
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Table 5. Comparison of Aperture Field Statistics
Fracture (b), o, Ao
Type cm cm o cm Pe = 2100,,,000" Re®

Brown [1995]¢ variety e 0.0017-0.018 0.065-1.5 e
Kumar et al. [1995] limestone 0.027 0.0051 0.036° 0.3 340 0.51
Keller et al. [1995] granite 0.038 e 0.18° 4 16000 24
Hakami and Larsson [1996] granite 0.036 0.015 0.16¢ 0.3 1100 1.7
Keller et al. [1999] granite 0.083 0.068 0.24° 0.6 1500 22
Yeo et al. [1998] granite 0.0607 0.0160 0.067¢ <0.5 460 0.7
Wan et al. [2000]® tuff 0.0281 0.0088 0.114 0.2 690 1.0
Rough-walled fracture (current study) analog 0.0221 0.006 0.073 0.05 140 0.2

Ellipsis indicates not available.

“This is the estimated integral scale of the log aperture field, based on the approximate separation at which the semivariogram reaches a level

of o?(1 — 1/e).

"The 210@aero i the value of Pe at which Taylor dispersion equals macrodispersion.
“This is the Reynolds number corresponding to Pe = 210a,,cr0 assuming D,,, = 1.5 X 107> cm?/s (typical for commonly used ionic tracers)

and v = 1.0 X 1072 cm?s.

9This is based on numerically combining measurements of individual surfaces.
“This is based on reported values of o, assuming a lognormal aperture distribution.

This is estimated based on the reported value of o7,;.

€These are reported values for 0 displacement between fracture surfaces, based on light transmission measurements made in the Flow
Visualization and Processes Laboratory, Sandia National Laboratories, New Mexico.

The theoretical model shows that the statistics of the aper-
ture field determine the specific nature of the Pe dependence
of D, . In particular, the Pe ranges in which different disper-
sion mechanisms dominate vary with aperture statistics ((b),
op, and ). The theoretical model assumes that the aperture
field can be described as a stationary lognormal random field.
Brown [1995] suggested that when two rough surfaces are
brought together to form a fracture, there is a length scale
(mismatch length scale) above which aperture variability is
essentially stationary because of correlation between the two
surfaces. Thus, although studies of fracture surfaces have dem-
onstrated variability in topography over multiple length scales
[e.g., Brown and Scholz, 1985; Poon et al., 1992; Schmittbuhl et
al., 1993; Plouraboue et al., 1995; Power and Tullis, 1995], the
largest being of the order of the sample size (up to O(1) m),
the aperture field formed by two of these surfaces may not
exhibit the same multiscale characteristics. This hypothesis is
supported by a number of measurements made of natural
fractures (see Table 5), but it is clearly an area that merits
more study. Our analog, rough-walled fracture was statistically
homogeneous, with mean and variance within the range mea-
sured in these actual fractures. Additionally, the correlation
scale A, (defined here as the separation distance at which the
semivariogram reaches a value equal to (1 — 1/e) times the
sill value, which is identical to the integral scale in the case of
an exponential covariance function), was much smaller than
the dimensions of the fracture. This avoided the influence of
channeling at scales of the order of the sample size thus al-
lowing meaningful comparison to theoretical results.

For the previously published aperture statistics for fractures
in rock samples detailed in Table 5, we calculated the Pe value
(Pe = 210 a,ero) at which the Taylor dispersion and mac-
rodispersion coefficients are equal (next to last column in Ta-
ble 5). The values of B used for calculating «,,,.,, (6) assumed
an exponential covariance function; note that the exact shape
of the covariance function has only a mild influence on B,
through the integral in (4). The corresponding Reynolds num-
ber (Re) (last column in Table 5) clarifies whether the high
velocities associated with macrodispersion/Taylor dispersion
equivalence are within the “Darcian” region (i.e., linear rela-
tion between the mean hydraulic gradient and the mean flux).

Values of Re > ~1-10 imply that rather than the Taylor
dispersion regime, a new dispersion regime is likely, where
dispersion will be influenced by non-Darcian flow effects re-
sulting from the inertial terms in the Navier-Stokes equations.
We see that in the limestone, granite, and welded tuff fractures
characterized by Kumar et al. [1995], Yeo et al. [1998], and Wan
et al. [2000], respectively, the influence of Taylor dispersion
will be evident (for solute transport in water) at Re = 1.0.
Thus there is a range of flow rates for these fractures in which
Taylor dispersion will be the dominant dispersion mechanism,
just as we have found in our analog, rough-walled fracture. For
the granite fractures measured by Hakami and Larsson [1996]
and Keller et al. [1999], the value of Pe at which Taylor disper-
sion will begin to dominate corresponds to 1 < Re < 10. In
these fractures, though Taylor dispersion may not become the
dominant dispersion mechanism before the flow becomes non-
Darcian, the influence of Taylor dispersion will result in a
nonlinear relationship between Pe and D, at high flow rates.

The occurrence of both macrodispersion and Taylor disper-
sion regimes in fractures can have significant implications on
interpreting tracer tests at the single-fracture scale. For in-
stance, in radial flow tracer tests the mean flow velocity in-
creases as solute approaches the well. As a result, macrodis-
persion can be the dominant dispersion mechanism far from
the well, whereas Taylor dispersion effects become increasingly
important close to the well. Commonly used interpretation
techniques [e.g., Raven et al., 1988; Maloziewski and Zuber,
1990; Cady et al., 1993; Novakowski et al., 1995] incorporate
only a dispersion coefficient that is a linear function of velocity,
implicitly assuming that Taylor dispersion effects are insignif-
icant. The analysis of Hodgkinson and Lever [1983], however,
incorporates only Taylor dispersion. Subtle nonlinear Pe de-
pendence of D, may also be important, when using multiple
tracers with widely differing molecular diffusion coefficients.
The Pe values corresponding to the different tracers under the
same hydraulic conditions can vary over 1-2 orders of magni-
tude, placing the different tracers in different dispersion re-
gimes. The Pe dependence of D, , however, is typically ignored
in interpreting these tracer tests [e.g., Maloziewski and Zuber,
1990].

Another important feature that merits additional study is the



1624

fundamental difference between the Pe dependence of D, in
variable aperture fractures and porous media. Several studies
in porous media indicate a linear relationship between D, and
Pe at high Pe (Pe > 10°%) [e.g., Fried and Combarnous, 1971].
This linear relationship breaks down only when the Pe value
becomes so large that the flow becomes non-Darcian. We
believe that this feature relates to the difference in the topol-
ogy of the void space in fractures and porous media. In most
fractures used in previously reported experiments and in our
study, the fraction of contact area between the fracture sur-
faces is relatively small. The resulting long, simply connected
flow paths permit Taylor dispersion to “develop.” However,
because of the complex tortuous topology of the pore space in
porous media, there may not be an opportunity for Taylor
dispersion to develop, especially at high Pe, where the travel
time through a single pore throat will be very small [e.g., Bear,
1972]. Additional computational and experimental studies in
fractures with larger fractions of contact area and in porous
media would help to clarify the fundamental reasons for the
difference of the Pe dependence of D, between fractures and
porous media.

Appendix: Influence of Concentration
Measurement Errors on Estimates of D,

As with light transmission measurements of aperture fields,
concentration field measurements are subject to random errors
due to CCD image noise and accuracy or systematic errors
(e.g., nonlinear dye absorbance, reflections, and refraction).
Unlike aperture measurements, concentration measurements
can be easily calibrated by sequentially filling the fracture with
standards of known concentration and fitting (1) to the mea-
surements at each pixel. Calibration effectively minimizes ac-
curacy errors, leaving image noise as the primary error source.
The influence of noise can be quantified by measuring the
difference between the actual concentration in the fracture
during calibration and the concentration calculated using the
calibration curves developed at each pixel. Averaging the dif-
ference between the measured concentration at each pixel and
the actual concentration over the entire field yielded a maxi-
mum mean error 0.003C, (C, = 0.25 g/L). This indicates
that (11) fits the data well and that errors are predominantly
due to random signal noise. The root-mean-square (RMS)
errors at individual pixels ranged from 0.001C, for the 0 g/L.
fields in both fractures to 0.023C,, and 0.019C|, for the 0.25
¢/L field in the Hele-Shaw cell and the rough-walled fracture,
respectively. These random errors do not influence our esti-
mates of D, because in calculating D, we combine measure-
ments from thousands of pixels which significantly reduces the
influence of noise.

Despite calibrating our measurement system, the reflective
coating on the surface of the band-pass filter on the camera
lens caused additional errors in our concentration measure-
ments when the fracture was not filled entirely with one con-
centration (i.e., during solute transport experiments). These
errors included an artificial, reflected plume that was ~1% of
the concentration of the real plume and led the real plume
through the fracture by ~7.1 cm. We also observed a trend in
background concentrations in some fields that resulted in ad-
ditional mean errors ranging from 0.003C, at the inflow end
of the fracture to ~—0.003C, at the outflow end of the
fracture. This trend in background concentrations may be due
to a small shift in the intensity of the light source that was not
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uniform over the entire field. Because the background trend
remained relatively constant over the several days that we
performed the experiments, this shift appears to be a one-time
occurrence after we obtained the calibration images and be-
fore we ran the experiments. Because these two additional
sources of concentration measurement error were consistent
from image to image, we were able to develop an image pro-
cessing algorithm to minimize the influence of these errors on
estimates of dispersion coefficients.

To remove our observational bias and to streamline the
processing of over 700 experimental images, we developed a
processing routine that consisted of four primary steps (de-
scribed here in detail): (1) Subtract the reflected plume from
each image. (2) Apply a median filter to the entire concentra-
tion field. (3) Define a region of interest (ROI) that completely
surrounds the plume but excludes small errors far from the
plume. (4) Apply a thresholding routine inside the ROI to
isolate the plume from any trend in background concentrations
within the ROI. We varied the parameters used in this routine
to bound the possible values of D; measured for each exper-
iment. These bounds are displayed as error bars in Figure 5.
Note that the error bars represent the possible range of values
of D, not a standard deviation or confidence interval.

We removed the reflected plume from each image by scaling
and shifting the real plume appropriately and subtracting it
from the concentration field. Using a median filter, which sets
the value at each pixel to the median value of a 5 X 5 pixel box
surrounding the pixel, we reduced noise and any anomalous
measurements from the field. This filtering step smoothed the
concentration field slightly, but since the resolution of our
measurements (pixel size equals 0.0154 X 0.154 cm) was sig-
nificantly smaller than the scale of real concentration varia-
tions within the field, the effect of this smoothing on our
estimates of D, was negligible. We then defined a small ROI
centered at the first moment of the real plume and, using (14),
measured the second spatial moment of the ROI. Incremen-
tally increasing the size of this ROI resulted in a plot of second
moment versus ROI size which at first grew quickly and then
leveled off. The degree to which the slopes of plots of M,
versus ROI size leveled off depended on the magnitude and
relative location of the trend in the background concentra-
tions. However, for each experimental image the value of M,
at which the slope first began to level off (M,_) was directly
related to the size of the plume. We defined an ROI around
the plume that had a width and height of 8V M, as we found
a region of this size captured the entire plume “and a buffer
around the plume (this corresponds to the size of the third
frame shown in Plate 1b). We then obtained the worst case
overestimation of D, by measuring M, of this entire ROI. We
defined a threshold concentration equal to 0.3% of the maxi-
mum mass measured in the solute plume from the initial image
of each series. By setting all values within the ROI that were
less than this threshold to zero, we obtained the worst case
underestimation of D,. We obtained the best estimation of
D, by dilating the region defined by the thresholding routine
to include pixels with low mass in the vicinity (approximately
eight pixels) of the plume that were below the threshold con-
centration.
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