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[1] We use a Monte Carlo approach to explore the potential impact of observation and
inversion model errors on the spatial statistics of field-estimated unsaturated hydraulic
properties. For this analysis we simulate tension infiltrometer measurements in a series of
idealized realities, each consisting of spatially correlated random property fields. We
consider only simplemeasurement errors that can be easilymodeled.We show that estimated
hydraulic properties are strongly biased by small, simple observation and inversion model
errors. This bias can lead to order-of-magnitude errors in spatial statistics and artificial
cross correlation between measured properties. The magnitude of bias varies with the true
mean of the property field, the type of error considered, and the type of spatial statistic. We
find no unique indicators of bias as property values may appear reasonable and spatial
statistics may look realistic. Our results suggest new concerns for geostatisticians, stochastic
modelers, and unsaturated zone practitioners who are unaware of the potential impact of
spatial bias in field-estimated properties. INDEX TERMS: 1869 Hydrology: Stochastic processes;

1875 Hydrology: Unsaturated zone; 1829 Hydrology: Groundwater hydrology; 1894 Hydrology: Instruments

and techniques; 5114 Physical Properties of Rocks: Permeability and porosity; KEYWORDS: unsaturated zone,

geostatistics, spatial bias, measurement error, inversion model error, hydraulic property measurement
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1. Introduction

[2] In recent years, there has been an increased focus on
characterizing the spatial variability of unsaturated hydraulic
properties. A variety of field methods for estimating in situ
hydraulic properties have been developed [e.g.,Reynolds and
Elrick, 1987; Ankeny et al., 1991; Simunek and van Gen-
uchten, 1996] and applied in spatial variability studies [e.g.,
Istok et al., 1994; Jarvis and Messing, 1995; Mohanty et al.,
1994; Russo et al., 1997; Shouse and Mohanty, 1998].
Although most studies carefully document instrument pro-
cedures, the magnitude of errors in hydraulic property
estimates and their impact on spatial statistics determined
from field data remain unevaluated.
[3] Many estimated hydraulic properties (e.g., hydraulic

conductivity) are likely to contain systematic error, or bias,
because they are not measured directly. In a typical property
measurement (e.g., pumping or permeameter test), a boun-
dary condition is imposed on the hydraulic system, and the
response of the system to that perturbation is monitored.
Properties are then estimated indirectly using nonlinear,
analytical or numerical, inversion models to infer property
values from the observed responses and boundary condi-
tions. Because property estimates depend on nonlinear

inversion models, purely random error in the observations
(observation error) can lead to spatially-correlated, system-
atic error, or bias, in the derived property value [Mandel,
1964]. Spatial bias may also result when the inversion
model (e.g., governing equations, boundary conditions,
initial conditions, constitutive models, etc.) is inadequate
(inversion model error) [Kempthorne and Allmaras, 1986].
[4] In this paper, we develop and apply a Monte Carlo

approach to explore the relationship between observation and
inversion model errors and the resulting bias in the spatial
statistics of field-estimated unsaturated hydraulic properties.
We conduct Monte Carlo error analyses across a series of
simplified artificial realities, where constitutive relationships
are completely known. The mean values of hydraulic proper-
ties are varied between realities to define a parameter space
and reveal the relationship between the true hydraulic proper-
ties and spatial bias. For each artificial reality, we generate a
spatially correlated random field of the saturated hydraulic
conductivity and the exponential relative permeability
parameter [Gardner, 1958]. We then re-estimate these prop-
erties using simulated tension infiltrometer measurements
subject to known random errors. For this illustration, we
limited the number of errors to two types of observation error
(both related to transducer error) and one type of inversion
model error. The spatial statistics of the estimated properties
are compared to those of the true properties to assess bias. To
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ensure that bias reflects only property-measurement errors,
we sample all locations in a reality, eliminating errors in
spatial statistics due to sampling design.
[5] We find that small, simple observation and inversion

model errors can lead to significant bias in spatial statistics
of field-estimated properties. Some statistics (e.g., the mean
and variogram model parameters) can show an order of
magnitude error in some parts of our parameter space. Bias
is not homogeneous and varies with the true mean of the
property field, the type of error considered, and the type of
spatial statistic. We also see that observation and inversion
model errors can lead to strong cross correlation between
estimated parameters, even when there is none. We observe
no unique indicators of spatial bias, as biased statistics can
appear realistic and reasonable.

2. Methods

[6] We assume that Richard’s equation is valid and that
the unsaturated hydraulic conductivity is completely
described by the Gardner [1958] parametric model

K yð Þ ¼ Ks exp �ayð Þ ð1Þ

where y is the tension or the absolute value of the matric
potential, a is the slope of ln[K(y)]/y, and Ks is the
saturated hydraulic conductivity. We also assume that ln(a)
and ln(Ks) are second-order stationary, isotropic random
fields completely described by their mean values and a 2D,
isotropic, exponential variogram model

ge hð Þ ¼ s2 1� exp � h

lc

� �� �
ð2Þ

where s2 is the variance of the random process, h is a
separation vector, and lc is the correlation length. We
generate 221 pairs of spatially correlated ln(a) and ln(Ks)
fields, with cov[ln(a), ln(Ks)] = 0, and vary the geometric
means of a and Ks between pairs. Each pair of ln(a) and
ln(Ks) fields constitutes an artificial reality. At every spatial
location in a reality, we simulate two steady state tension
infiltrometer measurements, subject to simple errors, using
the analytical approximation of Wooding [1968]. We
assume that Wooding’s [1968] approximation is exact and
that no sub-sample-scale heterogeneity exists. Then we re-
estimate a and Ks using the experimental method of
Reynolds and Elrick [1991]. We calculate the spatial
statistics of the estimated fields of ln(a) and ln(Ks) and
compare their values with the known, ‘‘true’’ field statistics.
Relevant details are discussed below.

2.1. Random Fields

[7] For each reality we generate over 262,000 pairs (a
512 � 512 random field) of lognormal a and Ks with a fixed
geometric mean and variance. The pore size parameter, a, is
typically assumed to follow a normal distribution in most
unsaturated stochastic models [e.g., Yeh et al., 1985a,
1985b, 1985c; Mantoglou and Gelhar, 1987a, 1987b; Indel-
man et al., 1993; Zhang et al., 1998]. However, we have
chosen to describe a with a lognormal distribution because
a lognormal distribution may be more realistic [e.g., White
and Sully, 1992; Russo et al., 1997].
[8] The geometric means of a and Ks (aG and Ks

G

respectively) are varied between realities to define a param-

eter space representative of poorly sorted to well-sorted silt
to coarse sand. Philip [1969] suggests that the parameter a
ranges between 0.002 to 0.05 cm�1, although other
reported values are both smaller than 0.002 cm�1 [e.g.,
Bresler, 1978; Russo and Bouton, 1992] and greater than
0.05 cm�1 [e.g., Clothier et al., 1985; Russo et al., 1997].
aG is varied from 10�4 to 0.1 cm�1 to encompass this
range of values. Similarly, we vary Ks

G from 10�5 cm/s to
0.1 cm/s. This range is consistent with the range of
hydraulic conductivity values reported in tension infiltrom-
eter studies [e.g., Ankeny et al., 1991; Hussen and Warrick,
1993; Shouse and Mohanty, 1998] and is representative of
silty sand to coarse sand [e.g., Freeze and Cherry, 1979].
Across our entire parameter space, we generate 13 � 17 =
221 pairs of random fields, in which the means of ln(Ks)
and ln(a) are each incremented by steps of size 0.576
between simulations.
[9] The variances of ln(a) and ln(Ks) remain arbitrarily

fixed at 1.0 which are consistent with the range of values
reported from field studies [e.g., Russo and Bouton, 1992;
Mohanty et al., 1994; Istok et al., 1994; Russo et al., 1997].
We assume that the spatial structure of the random fields is
statistically isotropic and completely described by an expo-
nential variogram (2). In stochastic models, it is often
assumed that the correlation lengths of unsaturated param-
eters are the same [e.g., Yeh et al., 1985a, 1985b, 1985c;
Mantoglou and Gelhar, 1987a, 1987b], and for conven-
ience, we set all correlation lengths equal to 10 length units.
Random fields are generated using the FFT method [e.g.,
Robin et al., 1993].

2.2. Tension Infiltrometer Background

[10] We simulate tension infiltrometer measurements in
the presence of simple errors to provide estimates of a and
Ks. The tension infiltrometer is an instrument commonly
used for examining the spatial variability of unsaturated
hydraulic properties [e.g., U.S. Department of Energy (U.S.
DOE), 1993; Mohanty et al., 1994; Jarvis and Messing,
1995; Shouse and Mohanty, 1998]. It is a simple device for
applying a constant (negative) pressure boundary condition
to unsaturated soil (Figure 1). Contact with the soil is
established using a porous membrane on the base plate
ring. Typically, a ring is placed on the soil surface and filled
with fine sand. The base plate is placed upon the sand,
which provides improved contact with the soil. Flow from
the instrument is induced by a capillary gradient. The flux
from the instrument is determined by monitoring the declin-
ing water level in the Mariotte bottle (Figure 1). The design
and typical operation of the tension infiltrometer is
described by Ankeny et al. [1988]. With knowledge of
two applied pressures and corresponding observed steady
state flux rates, parameters a and Ks can be estimated using
the analytical approximation of Wooding [1968].

2.3. Tension Infiltrometer Errors

[11] For this illustration we limit the number of tension
infiltrometer errors and consider only two error scenarios. In
the first, pressure transducer errors (there are two trans-
ducers used to estimate the tension infiltrometer flux rate
and one transducer used to estimate the applied pressure at
the disk source) yield errors in observations of flux rates and
applied pressures. The second scenario includes these two
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observation errors but adds an inversion model error result-
ing from poor contact between the disk and the medium. In
the following, we discuss our models for observation errors
and inversion model errors.
[12] Two sets of observations, each consisting of an

applied tension and an observed steady state flux, are
required to estimate a and Ks [e.g., Reynolds and Elrick,
1991; Ankeny et al., 1991]. We assume that the applied
tension is observed using a standard pressure transducer in
the base plate (Figure 1). The flux from the Mariotte bottle
is estimated by observing the height of water in the bottle
with pressure transducers at two different times [e.g.,
Ankeny et al., 1988]. Observation errors are limited to
transducer error and changes in tension due to bubbling
within the Mariotte bottle.
[13] The estimated tension, ŷ, at the base plate membrane

is expressed as

ŷ ¼ yþ x ð3Þ

where y is the true tension and x is the error due to
transducer noise and drift and bubbling error. Because
bubbling error is a time dependant phenomena, x has a
temporal correlation. Ankeny et al. [1988] examined this
issue and concluded that, in most cases, temporal correla-
tion can be neglected. We assume that x is an independent,
mean-zero, normally distributed random variable and
neglect transducer drift, implying that the transducers

themselves are perfectly calibrated. With the assumption
of independence, the variance of ŷ is defined as

s2ŷ ¼
s2x
M

ð4Þ

where sx
2 is the variance of x and M is the number of times

the transducer is polled. Ankeny et al. [1988] reports that the
standard deviation of observed pressure within their tension
infiltrometer device is 0.62 cm. We assume that this
variability is representative of the tension variation at the
disk and set sx

2 = 0.4 cm2.
[14] Estimates of the flux rate from a tension infiltrometer

are most commonly based upon a method described by
Ankeny et al. [1988]. Two transducers in the Mariotte tube
are used to minimize, but not eliminate, the effect of
bubbling errors. The flux rate, Q̂, is estimated by determin-
ing the decline of water-level in the Mariotte tube as
infiltration occurs and applying

Q̂ ¼ �Ĥ

�t
pr2t ð5Þ

where �Ĥ = Ĥ(t2) � Ĥ(t1), �t = t2 � t1, (the polling
interval for the transducers), rt is the radius of the
Mariotte tube, and Ĥ(t) is the estimated height of the
water in the Mariotte tube at time t. Flux errors are caused
by errors in estimating the height of the water in the
Mariotte tube,

Ĥ tð Þ ¼ H tð Þ þ e ð6Þ

where H(t) is the true height of the water in the bubbling
tube at time t and e is an independent, mean-zero,
normally distributed error with variance se

2. As with the
error in observed tension, the assumed distribution and
assumption of independence of e is an approximation that
improves when the sampling period is much greater than
the bubble frequency. If N flux estimates are averaged,
then the variance of this estimate is

s2q ¼
2s2ep

2r4t
�t2N

ð7Þ

We estimate se
2 = 0.0025 cm2 from the results of Figure 2

of Ankeny et al. [1988], with spurious data removed. We
also assume that the radius of the bubbling tube rt is 1 cm,
that the pressure transducer is polled once per second, and
30 seconds worth of data are averaged to estimate the
steady state flux rate. Using (7), the variance of estimated
flux rates is sq

2 = 0.00165 cm6/s2.
[15] We consider only one type of inversion model error,

a ‘‘contact error’’ resulting from poor contact between the
base plate membrane and the sample medium. It is a
common problem during use of the tension infiltrometer
and, in our experience, appears to occur more frequently for
observations made at higher tensions. This type of error
reduces the area for flow and alters the flow geometry.
Flaws in the sand contact between the disk and the medium
act as large pores, which do not fill at high tensions. At
lower tensions, these pores fill, eliminating or reducing the
error. Since the tension infiltrometer requires at least two

Figure 1. Schematic of the tension infiltrometer. The base
plate (on the right) is in contact with the sampled medium.
Transducers are used to determine the flux rate from the
device and the applied tension at the base plate.
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observations, one at a higher tension, this error is often more
pronounced at the higher tension.
[16] We are not interested in studying contact error in

detail, but only its impact on estimating spatial statistics.
Consequently, we develop and apply a simple approxima-
tion based upon the reduction of area for flow. We assume
that the flow geometry does not change and that only the
disk area is reduced due to poor contact. We apply this
error only at the highest applied tension. The disk area is
multiplied by a scaling factor (1�f ), where f is selected
from a uniform random distribution over 0.0 to 0.1.
Because estimates of a and Ks require two flux observa-
tions, this error introduces an additional bias in the
estimated hydraulic properties. In the following sections,
the contact error scenario includes both the contact and
observation errors.

2.4. Hydraulic Property Estimates

[17] Using the tension infiltrometer, a and Ks can be
estimated from two observed steady state flux measure-
ments, Q̂1 and Q̂2, at the applied tensions ŷ1 and ŷ2. We
assume that the tension values used for each observation are
estimated to be ŷ1 ¼ 2:0 cm and ŷ2 ¼ 2:0 cm. These
values are selected to insure that y1, which is determined
from (3), remains >0.0 cm. The true tensions (yn) are
calculated by subtracting x from ŷn, for n = 1, 2. For each
observation, the value of x is determined by randomly
sampling a mean-zero normal distribution with sx

2 = 0.4
cm2. Given yn, a, and Ks, we calculate the true flux from
the tension infiltrometer using [Wooding, 1968]

Qn ¼
Ks

a
e�ayn aþ 4

prd

� �
pr2d ð8Þ

where rd is the radius of the disk and is equal to 10 cm.
[18] Once the true flux rate is determined, we calculate

the estimated flux Q̂n by adding mean-zero, normally
distributed error with sq

2 = 0.00165 cm6/s2. At sampling
locations where Q̂1 � Q̂2 the measurements are discarded,
as they would be in practice. Although we and others (e.g.,
B. P. Mohanty, personal communication, 2000; M. D.
Ankeny, personal communication, 2000) have observed
and followed this practice in field studies, it is not well
documented in the literature. The percentage of discarded

points is usually small. For our field studies, it is typically
around 5%. In this paper, Q̂1 � Q̂2 only because of errors in
flux estimates. In field studies, however, inversion model
errors, including sub-sample-scale heterogeneity and non-
steady state measurements [e.g., Logsdon, 1997] may also
contribute to this type of error.
[19] When contact errors are considered, Q̂1 is estimated

using the procedure outlined above, while Q̂2 is estimated
using the same variance sq

2 but is estimated using an altered
disk radius

r*d ¼ rd
ffiffiffiffiffiffiffiffiffiffiffi
1� f

p
ð9Þ

where f is sampled from a uniform distribution over 0.0 to
0.1. This means that the disk radius may be reduced from 10
cm to a minimum of �9.5 cm.
[20] The relative permeability parameter, a, is then esti-

mated with [Reynolds and Elrick, 1991]

â ¼ lnðQ̂1=Q̂2Þ
ŷ2 � ŷ1

ð10Þ

and the saturated hydraulic conductivity, Ks, is estimated
with

K̂s ¼
â Q̂1 e

â ŷ1

â p r2d þ 4rd
ð11Þ

This procedure is repeated for all pairs of a and Ks values.

2.5. Spatial Statistics

[21] For each spatially correlated random field, the mean,
variance, and cross covariance between ln(a) and ln(Ks) are
determined. In addition, local variograms are calculated for
ln(a), ln(Ks), lnðâÞ, and ln(K̂s) using the GSLIB subroutine
gam2 [Deutsch and Journel, 1998]

gðhÞ ¼ 1

2NðhÞ
XNðhÞ

i¼1

Uðxi þ hÞ � UðxiÞ½ 
2 ð12Þ

where N(h) is the number of samples in lag interval h and
U(x) is the random field. All of the resulting 221 � 4

Figure 2. Fraction of points discarded as a function of parameter space with (a) observation error and
(b) also with contact error.
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experimental variograms are fit using a Levenberg-Mar-
quardt algorithm with the exponential variogram model

gmðhÞ ¼ s2m 1� exp � 3h

lc

� �� �
þ s2n ð13Þ

where lc is the estimated ‘‘correlation length’’, sm
2 is the

‘‘model variance’’, and sn
2 is the nugget variance. The

variance is equal to the sum of the model and nugget
variances. When a variogram is constant for all lag
distances, we refer to it as a ‘‘nugget variogram’’ in which
sm
2 = 0.0 and lc = 0.0. In classical geostatistics, nugget

variograms represent white noise processes that have no
spatial correlation. To ensure accurate variogram fits, all
fitted variograms were visually inspected.

3. Results

[22] Here, we present the results of our Monte Carlo
analysis. Our results are plotted as contour maps across the
parameter space that is representative of poorly-sorted to
well-sorted silt to coarse sand. We first consider the fraction
of points discarded because of a physically implausible
result, Q̂1 � Q̂2. We then present the bias in the mean,
variance, and variogram model parameters for lnðâÞ and
ln(K̂s) across our parameter space. We also show that meas-

urement errors can introduce false cross correlation between
lnðâÞ and ln(K̂s). Finally, we discuss our results at the end of
the section. In the following, bias for statistical parameters is
shown using a ratio of ‘‘estimated’’/‘‘true’’ value. The bias
ratio equals 1.0 for an unbiased statistic and exceeds 1.0 when
the estimated statistic is larger than the true statistic.
[23] Figures 2a and 2b show the fraction of points

discarded (FPD) because of an unrealistic result, Q̂1 �
Q̂2. The FPD increases when tension infiltrometer flux rates
are small and errors dominate flux rate measurements. This
occurs when a is high and Ks is small. When only
observation errors are considered (Figure 2a), the FPD is
larger than when contact errors are included (Figure 2b).
When contact errors are present, the FPD decreases across
the parameter space because Q̂2 is underestimated, reducing
the likelihood that Q̂1 � Q̂2. The rejection of points
introduces a bias in the flux values at the remaining points.
Points are more likely to be discarded when either Q̂1 is too
small or Q̂2 is too large. At retained points, Q̂1 measure-
ments tend to be high while Q̂2 measurements tend to be
low. This bias in flux rates affects the spatial statistics of
lnðâÞ and ln(K̂s). It is important to note that property bias
also results from the propagation of unbiased observation
errors through the inversion model, as we’ll see next.
[24] Figure 3 presents errors in the geometric means of

estimated properties â and K̂s. The most accurate region in

Figure 3. Bias in the geometric mean of (a) â and (b) K̂s estimated with observation errors alone and
bias in the geometric mean of (c) â and (d) K̂s estimated with both observation and contact errors. In this
and Figures 4–7, bias is shown using a ratio of the ‘‘estimated’’/‘‘true’’ value. The bias ratio equals 1.0
for an unbiased statistic and exceeds 1.0 when the estimated statistic is larger than the true statistic. The
most accurate region in Figures 3–7, with relative error between 0.95 and 1.05, is shaded.
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this and the following figures, with a bias ratio between
0.95 and 1.05, is shaded. When only observation errors are
present (Figures 3a and 3b), the geometric means of both
properties are accurately estimated in an overlapping region
characterized by high mean hydraulic conductivity (i.e., flux
rates are high relative to flux rate errors). The geometric
means show greater bias when the mean hydraulic con-
ductivity is small (i.e., flux rates are small). Bias in the
geometric mean of â also decreases at high aG where the
FPD (Figure 2a) is greatest. This is counterintuitive because
a large FPD indicates that the flux rates, Q̂1 and Q̂2, are
strongly biased. However, bias in the log flux ratio, ln(Q̂1/
Q̂2) from (10), decreases at high aG and increases at low
aG. This result shows that bias in an estimated property may
not reflect the bias in the observations.
[25] Figures 3c and 3d show that the biases in the geo-

metric means change drastically when contact error is added.
The geometric mean â is only accurately estimated in a
narrow region near the top of parameter space (high aG),
while the geometric mean K̂s is overestimated across the
entire parameter space. In contrast to the observation-error
case, estimated geometric means show strong dependence on
aG. Contact errors decrease Q̂2, leading to an increase in the
flux ratio and overestimation of both â and K̂s.
[26] Figure 4 shows bias in the variance of lnðâÞ and

ln(K̂s). When only observation errors are present (Figures 4a
and 4b), errors in the variance of both parameters appear
similar except that the variance of lnðâÞ is larger. The

variance of lnðâÞ and ln(K̂s) is accurately estimated at large
hydraulic conductivity. Errors increase as aG and Ks

G

decreases, except at very small hydraulic conductivity (far
left portion of parameter space) where the errors decrease
again. As aG or Ks

G decreases, the variability of the log ratio
in (10) increases, increasing the variance of lnðâÞ. At very
small Ks

G, however, Q̂1 and Q̂2 are dominated by errors. The
variability of the log ratio is reduced, and the variance of
lnðâÞ decreases.
[27] Figures 4c and 4d show that the errors in the variance

of lnðâÞ and ln(K̂s) change significantly when contact errors
are added. Accurate regions are much smaller for both lnðâÞ
and ln(K̂s), and they no longer overlap. Errors in the
variances of lnðâÞ and ln(K̂s) show greater dependence on
aG. The variance of lnðâÞ is underestimated across much of
the parameter space, because Q̂2 becomes independent of
Q̂1 when contact errors are present. The variance of ln(K̂s) is
overestimated at low aG because of compensating errors.
Consider the covariance between Q̂1 and â in

var ln ðK̂sÞ
� 	

/ var ln ðâÞ½ 
 þ var ln ðQ̂1Þ
� 	

þ 2cov ln ðâÞ; ln ðQ̂1Þ
� 	

ð14Þ

In general, ln(Q̂1) and lnðâÞ exhibit a large negative
covariance that reduces the variance of ln(K̂s). When contact
errors are present, however, this covariance approaches zero
because â depends primarily on the errors in Q̂2.

Figure 4. Bias in the variance of (a) lnðâÞ and (b) ln(K̂s) estimated with observation errors alone and
bias in the variance of (c) lnðâÞ and (d) ln(K̂s) estimated with both observation and contact errors.

47 - 6 HOLT ET AL.: SPATIAL BIAS IN FIELD-ESTIMATED UNSATURATED HYDRAULIC PROPERTIES



[28] Bias in the variogram model variance and correlation
length for lnðâÞ is shown in Figures 5a and 5b, respectively.
Both the model variance and correlation length are accu-
rately estimated at large Ks

G. The pattern of error in the
model variance is similar to the pattern of error in the
variance of lnðâÞ (Figure 4a), except in the upper left corner
of parameter space (high aG and small Ks

G) where the
model variance approaches zero. Correlation lengths are
accurately estimated, with bias values near one, across most
of the parameter space. As with the model variance,
correlation lengths become inaccurate in the upper left
corner of parameter space (Figure 5b).
[29] Figures 5c and 5d display the bias in the model

variance and correlation length for lnðâÞ when contact
errors are added. Regions equal to zero are patterned
indicating nugget variograms in these and all remaining
figures. There are no overlapping accurate regions, and
nugget variograms (model variance and correlation length
equal to 0.0) result at low aG. Unlike the variance
(Figure 4c), the model variance is underestimated across
the entire parameter space. The correlation length, how-
ever, is more accurate with a bias ratio >0.8 across most
of parameter space. At low aG, noise due to random
contact errors eliminates spatial correlation leading to
nugget variograms.
[30] Figures 6a and 6b present the bias in the model

variance and correlation length for ln(K̂s). Model variances
and correlation lengths are accurately estimated across

much of the parameter space. Nugget variograms occur at
small Ks

G and low aG. The pattern of error in the model
variance of ln(K̂s) differs greatly from that of the variance of
ln(K̂s) (Figure 4b), which is overestimated in this region.
The variogram of ln(K̂s) is

glnðK̂sÞ / glnðâÞ þ glnðQ̂1Þ þ 2glnðâÞ;lnðQ̂1Þ ð15Þ

where glnðâÞ is the variogram of lnðâÞ, glnðQ̂1Þ is the
variogram of ln(Q̂1), and glnðâÞ;lnðQ̂1Þ is the cross-variogram
between lnðâÞ and ln(Q̂1). At small Ks

G and low aG, glnðâÞ is
large (Figures 5a and 5b), but noise from error in the flux
rates cause glnðQ̂1Þ to be underestimated. glnðâÞ;lnðQ̂1Þ main-
tains large negative values, reducing the relative contribu-
tion from glnðâÞ.
[31] When contact error is added, patterns of bias in the

model variance and correlation length of ln(K̂s) change
(Figures 6c and 6d). Accurate regions for the model
variance and correlation length do not over lap. The model
variance is overestimated, but the correlation length remains
fairly accurate (bias ratio >0.8) across most of the parameter
space. Errors in the cross-variogram glnðâÞ;lnðQ̂1Þ still strongly
control the variogram of ln(K̂s). At low aG, lnðâÞ is
controlled by errors in Q̂2

, and glnðâÞ;lnðQ̂1Þ is small. As a
result, the estimated correlation length of ln(K̂s) is fairly
accurate (Figure 6d), but the model variance is greatly
overestimated (Figure 6c). As with the case with no contact
error, model variances and correlation lengths approach zero

Figure 5. Bias ratio for variogram model parameters of lnðâÞ: (a) model variance with measurement
errors only, (b) correlation length with measurement error only, (c) model variance with contact error, and
(d) correlation length with contact error. Regions equal to zero are patterned, indicating nugget
variograms, in this figure and Figure 6.
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at high aG and small Ks
G (upper left corner), because flux

rate estimates are dominated by errors.
[32] Although true properties ln(a) and ln(Ks) are statisti-

cally independent, we observe significant cross correlation
between estimated properties lnðâÞ and ln(K̂s) (Figure 7).
False cross correlation between lnðâÞ and ln(K̂s) results
because both â and K̂s depend on Q̂1 ((10) and (11)), and K̂s

depends on and increases with â (equation (11)), yielding
positive point correlation functions. When only measure-
ment errors are present, the correlation coefficient for lnðâÞ
and ln(K̂s) appears to increase as Ks

G decreases, reflecting
increasing errors in the flux rates. When contact errors are
added, the pattern of the correlation coefficient changes, and
strong cross correlation is observed at both large Ks

G and

Figure 6. Bias ratio for variogram model parameters of ln(K̂s): (a) model variance with measurement
errors only, (b) correlation length with measurement error only, (c) model variance with contact error, and
(d) correlation length with contact error.

Figure 7. Correlation coefficients for lnðâÞ and ln(K̂s) as a function of parameter space: (a) with
measurement error only and (b) also with contact error. Regions with correlation coefficients equal to
zero are patterned.
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low aG (lower right corner), and small Ks
G and high aG

(upper left corner of parameter space). This occurs because
â tends to be overestimated in this region of parameter
space (Figure 3c).

4. Discussion

[33] Bias in the spatial statistics of lnðâÞ and ln(K̂s)
results from the propagation of small, simple observation
and inversion model errors through nonlinear inversion
models, equations (10) and (11). For both parameters, the
magnitude of bias varies with the ‘‘true’’ spatial statistics
of the underlying field (i.e., the mean). Our results also
show that bias in spatial statistics may not follow bias in
observations (i.e., the FPD), due to nonlinearity in the
inversion model. The inversion model filters biased obser-
vations and can lead to counterintuitive property errors
when nonlinearity is strong. Empirical models for the
variance and variogram are also nonlinear filters. As a
result, variogram or variance bias may be significantly
different from bias in the mean. The character of bias
changes between one-point and two-point statistics (e.g.,
the variance and the variogram) because errors are random
space functions characterized by their own variogram.
Finally, our results show that observation and inversion
model errors can lead to erroneous cross correlation
between parameters.
[34] Bias in spatial statistics varies greatly depending

upon the type of error affecting measurements. Our results
show that when only observation errors affect property
measurements overlapping accurate regions for all spatial
statistics occur somewhere in parameter space. Inversion
model errors, however, are much more insidious because
overlapping accurate regions do not occur. In principle,
observation errors can be limited by design. It is almost
impossible, however, to eliminate inversion model errors
because inversion models cannot incorporate all the physics
relevant to a hydraulic property [Beckie, 1996].
[35] In this study, points are discarded when measure-

ment errors produce unrealistic results. Contact error, an
inversion model error, actually increases the number of
interpretable data, but does not improve the spatial sta-
tistics of lnðâÞ and ln(K̂s). In practice, data that are
spurious, unrealistic, or difficult to interpret are routinely
discarded, possibly contributing to bias in hydraulic prop-
erty estimates. Conversely, one cannot infer that apparently
good data implies no bias in property estimates, because
biased properties can result from the propagation of
unbiased observation error through a nonlinear inversion
model.
[36] Unfortunately, we find no unique indicators of bias

in tension infiltrometer data. Certain results (e.g., large FPD,
large positive correlation coefficients, and nugget vario-
grams) can strongly suggest the presence of bias, but
indicators of little or no bias are not obvious from our
results. The spatial statistics (mean, variance, and vario-
gram) offer few diagnostic indicators of measurement bias.
In fact, spatial statistics can appear realistic, but still be
strongly biased. Nugget variograms could indicate either
strong bias or lack of spatial correlation. Similarly a nugget
effect in the variogram, a positive difference between the
variance and model variance, could indicate bias but may
also indicate uncorrelated random errors, sub-sample scale

heterogeneity, or nonideal sample location [e.g., Journel
and Huijbregts, 1978].

5. Neglected Errors

[37] In this illustrative study we include only very small
and simple forms of error and neglect many other types of
error likely to affect tension infiltrometer measurements.
Consequently, the spatial statistics of field-estimated proper-
ties are likely to show more bias than that reported here.
[38] Observation errors may be larger than those used

for this study. The flux rate errors used here were based on
instrument observations reported by Ankeny et al. [1988].
Their observations were made under highly controlled
laboratory conditions (M. D. Ankeny, personal communi-
cation, 1998). We conducted a series of laboratory repeat-
ability studies to evaluate directly the flux rate variance,
sq
2, during realistic tension infiltrometer operation. A large

sandbox was constructed and filled with well-sorted, fine
sand. The tension infiltrometer (manufactured by Soil
Measurement Systems of Tucson, Arizona) was calibrated
using standard methods [e.g., Soil Measurement Systems,
1992], and applied following normal procedures. After
each test, the sand was returned to a constant initial
condition by applying a vacuum to a pressure plate at
the base of the box. For these tests, sq

2 was determined to
be 0.06 cm6/s2. This value may be more representative of
field studies than the flux-error variance used here (sq

2 =
0.00165 cm6/s2).
[39] Errors in applied tension at the disk source may also

be much larger than considered here. Many tension infil-
trometers do not have a pressure transducer located at the
disk source. Instead the applied tension at the disk is
traditionally calibrated at a given bubble rate [e.g., Soil
Measurement Systems, 1992]. A constant bubble rate is
achieved by establishing a vacuum on the Mariotte bottle,
and a manometer is connected to the source tube for the
disk. The depth of the air entry tubes is adjusted until the
desired tension in the source tube is reached. This approach,
however, is subject to a variety of errors. Because temper-
ature changes will affect the expansion of bubbles, effective
steady state tensions will systematically vary from the
calibrated values. In addition, some tension infiltrometers
have a separate disk, and errors will be introduced if the
disk is not at the correct elevation relative to the Mariotte
bottle.
[40] In this study, we included only one simple inversion

model error, that due to poor contact with the sampled
medium. Other inversion model errors can also produce
biased spatial statistics. These other potential sources of bias
include sub-sample-scale heterogeneity, viscosity varia-
tions, changes in the medium during infiltration, soils with
nonexponential hydraulic conductivity functions, and air
entrapment.

6. Summary and Implications

[41] We use Monte Carlo error analyses to illustrate the
impact of observation and inversion model errors on the
spatial statistics determined from field-measured unsatu-
rated hydraulic properties. We construct a series of idealized
artificial realities (spatially correlated random fields) com-
pletely described by the Gardner parametric model [Gard-
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ner, 1958]. We assume that parameters a and Ks are
lognormally distributed random fields completely charac-
terized by their geometric means and exponential vario-
grams. The geometric means (aG and Ks

G) are varied
between 221 different realities to reveal the connection
between true property values and errors in spatial statistics.
Geometric means are selected to represent a parameter
space that varies from poorly sorted to well-sorted, silt to
coarse sand. Properties are estimated using simulated ten-
sion infiltrometer measurements subject to small, simple
errors. To minimize the degrees of freedom in our problem,
we consider two error scenarios. The first is an observation-
error scenario with errors in estimates of tension infiltrom-
eter flux rates and applied pressures at the disk source. The
second is a contact-error (inversion model error) scenario
that adds a boundary-condition error due to poor contact
between the tension infiltrometer disk and the sampled
medium. The spatial statistics (mean, variance, correlation
length, and variogram model variance) of the true and
estimated property fields are determined using all locations
within each reality to insure that errors in spatial statistics
reflect only errors in property measurements.
[42] Our results show that even in very idealized, sim-

plified systems small observation and inversion model
errors can lead to significant bias in the spatial statistics
of measured hydraulic properties. We discard data locations
due to a physically implausible result, Q̂1 � Q̂2. The
fraction of discarded points, FPD, increases in that part of
parameter space characterized by low flux rates (high aG

and small Ks
G), and decreases when contact errors are

present. Errors in statistics, however, tend not to be con-
trolled by the fraction of discarded points because the
inversion model filters bias in observations and our inver-
sion model errors are independent of observations. When
only observation errors are present, spatial statistics for
lnðâÞ and ln(K̂s) are accurately estimated in overlapping
regions at large Ks

G. With the addition of our inversion
model error, however, the error patterns change significantly
and accurate regions do not overlap. The magnitude and
pattern of error vary for different spatial statistics, so that
knowledge of bias for one statistical measure is of limited
use in predicting bias in another. Although we generated
uncorrelated fields of ln(a) and ln(Ks), we observe signifi-
cant correlation between lnðâÞ and ln(K̂s) indicating that
observation and inversion model errors can generate artifi-
cial cross correlation between parameters.
[43] These findings have broad implications for instru-

ments used for characterizing spatial variability. Observa-
tion and inversion model errors lead to biased estimates of
hydraulic properties and their spatial statistics when inver-
sion models are nonlinear. Bias is most sensitive to inver-
sion model errors because observation errors are minimized
by design. Bias is not homogeneous, and its extent of bias
depends on the character of the measured statistic, inversion
model nonlinearity, the true values of the sampled hydraulic
properties, and the nature of observation and inversion
model errors affecting measurements. Strong bias can
produce or eliminate cross correlation between parameters
and preclude accurate estimation of the mean, variance, and
variogram. The effects of observation and inversion model
error can be insidious, as hydraulic property estimates may
appear reasonable and generate realistic-looking spatial

statistics which are, however, inaccurate and misleading.
The geostatistical approaches used in spatial variability
studies offer no formal approaches for detecting and treating
measurement bias.
[44] We’ve identified three different audiences for this

paper. First, most geostatisticians do not consider how
measurement noise and inversion errors bias spatial statis-
tics, except to roughly approximate it through a nugget
term. This paper illustrates that that naivete can produce
misleading results. Unfortunately there is no simple diag-
nostic to identify the presence of this bias, nor is there a
filter to remove it. It remains an area of open investigation
that depends on the instrument and what it measures.
Vadose zone stochastic flow and transport modelers com-
pose the second audience. They seek spatial statistics to
parameterize their models. The presence of significant
parameter bias suggests that, by using these biased param-
eter estimates, their predictions should also be biased,
perhaps seriously. The last audience is composed of instru-
mentation practitioners, particularly those who employ the
tension infiltrometer or related unsaturated zone instru-
ments. In recent years it has become increasingly evident
that a major application of these instruments is for geo-
statistical and stochastic studies, raising the concerns
expressed above. But this paper also suggests more tradi-
tional concerns for these instruments. Instruments employ-
ing sufficiently nonlinear inversions may not be able to
distinguish subtle differences between materials.
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