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[1] Under conditions of unsaturated flow, others have
shown experimentally that fracture intersections can direct
flow to a single exiting fracture. In addition, they have been
found to gather water from above to release as a pulse
below. We formulate a simple model where these two
behaviors are embedded within a network. With slow steady
inflow distributed randomly along the top of the network,
the system self organizes to form avalanches of water that
can penetrate to great depths. When all intersections split
their outflow, flow diverges with depth and develops into a
self-organized dynamical state where the distribution of
avalanche sizes follows a power-law over many decades. As
the fraction of intersections that direct outflow singly is
increased, spatial structure passes from divergent through
braided to a fully convergent, hierarchical flow regime
where avalanche size is minimized along one-dimensional
slender pathways. INDEX TERMS: 1829 Hydrology:

Groundwater hydrology; 1848 Hydrology: Networks; 1869

Hydrology: Stochastic processes; 1875 Hydrology: Unsaturated

zone; 3220 Mathematical Geophysics: Nonlinear dynamics.

Citation: Glass, R. J., and R. A. LaViolette (2004), Self

organized spatial-temporal structure within the fractured Vadose

Zone: Influence of fracture intersections, Geophys. Res. Lett., 31,

L15501, doi:10.1029/2004GL019511.

1. Introduction

[2] Recent results from both laboratory and field experi-
ments in fractured rock suggest that fracture intersections
can force the convergence of pathway; flow from an inter-
section need not be divided amongst all exiting fractures but
can be directed into only one [Glass et al., 2002b; LaViolette
et al., 2003]. Laboratory experiments have also shown that
fracture intersections can act as hysteretic gates that integrate
flow from above until a threshold volume is exceeded, and
then release all or a portion of the volume as a pulse below
[Glass et al., 2002a; Wood et al., 2002]. The implications of
these behaviors at intersections are of great importance to
applied hydrological problems in the fractured Vadose Zone
where one must characterize the pristine or contaminated
formation with limited sampling, predict travel times for
water and contaminants, and interpret the results of each to
answer specific questions of water quantity and quality. For
these situations, understanding the possible spatial-temporal
structure for flow and transport is required.

[3] Here we consider the influence of fracture intersec-
tions alone on generating spatial-temporal structure within
the fractured Vadose Zone. We model the intersections
linked together in a stylized network where each intersec-
tion is treated as an integrator and outflow from the
intersection can either be split between exiting fractures
equally or pass to only one. When all intersections split their
outflow, our model is similar to the directed ‘‘Sand-Pile’’, or
DSP, that exhibits ‘‘Self Organized Criticality’’ [Dhar and
Ramaswamy, 1989; Jensen, 1998; Dhar, 1999]. As the
fraction of single outflow increases, channels form due to
convergence within the network; spatial structure with depth
transitions from divergent to braided to the fully convergent
hierarchal end member when only single outflow is
allowed. For steady inflow randomly applied to the top of
the network, water moves through these defining structures
as avalanches that can penetrate to great depths. From
divergent to convergent regimes, avalanche size distribution
transitions from a smooth power-law to a single value where
every avalanche spans the entire system but transmits the
minimum volume of water. These results suggest that alone,
the individual local action of fracture intersections can
create self organized spatial-temporal structure within the
fractured Vadose Zone with a wide range of possibility.

2. Model Formulation and Simulations

[4] Let us consider the fracture network as composed of
an array of intersections connected by fractures. Water
moves down the plane of an individual fracture either as
fingers, droplets or in films [e.g., Glass et al., 1995]. If the
intersection acts as a capillary barrier, water reaching the
adjoining intersection will pool above such as has been seen
in experiment [Wood et al., 2002]. As the pool height
increases, it will reach a level where the pressure at the
intersection is high enough for water to enter the intersec-
tion. At this height, the barrier is breached and the pool
decreases to a minimum as it passes water below to one or all
of the exiting fractures. While the rise or integration phase of
the process may be slow, the discharge phase is rapid, as will
be the passage of the water to the next intersection(s).
[5] To model this process in abstract, we make use of a

separation of time scales. We will consider the in-flow at the
top of the network (driving) to be slow and delivered in
small ‘‘drops’’ while movement within the network (relax-
ation) is fast and threshold based when it occurs. Each
intersection can be considered as behaving as a ‘‘bucket’’
that operates under a simple local threshold rule: collect
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water entering from above and discharge it below only
when the water volume reaches or exceeds a maximum
value. For this combination of slow drive and rapid local
relaxation in a directed network, we obtain a DSP similar to
that first studied by Dhar and Ramaswamy [1989], which
we will call the ‘‘Tipping Bucket Model’’, or TBM. When
all the buckets split their outflow, the analogy is complete
and the model will evolve into a self organized dynamical
state, but far enough from its critical point that we
obtain instead the dimension-independent mean-field self-
organized behavior [Jensen, 1998; Dhar, 1999].
[6] For our simulations, we idealize the fracture network

as a regular, two-dimensional array of intersections arranged
on a diamond lattice. Every intersection, or bucket, is
connected to two others on the row above and on the row
below (see Figure 1). When the amount of water in a bucket
reaches a predetermined value of 10, it tips, passing all of its
volume to one or both of its neighboring buckets in the row
below. A fraction of buckets, 1-F, are chosen at random to
distribute flow equally; for the remainder of the buckets,
flow goes right or left (but not both) with equal probability.
The distribution behavior of any particular location does not
change once fixed at the beginning of a simulation. This
amounts to adding in quenched disorder into the network,
and we anticipate from other work a great sensitivity of the
results to F [Tadic and Ramaswamy, 1996]. Water is added
in unit increments at random to buckets along the top row
and exits the network from the bottom row. Periodic
boundary conditions are implemented along the vertical
edges of the network such that the network wraps in the
horizontal. In this way, we minimize lateral edge effects in a
relatively narrow but tall network (50 � 1000).
[7] Each simulation is initiated by distributing water at

random within the network followed by the slow random
addition of unit volumes of water along the top. When a
bucket tips, we stop adding water and instead allow the
problem to fully relax based on local rules. The tipping of
one bucket passes water to the row below where it may
cause connected buckets to tip. We follow the tipping
process, or ‘‘avalanche’’, downward row by row until no
further buckets are found over threshold. We then resume
the addition of water along the top. Each simulation is
conducted for 107 unit additions. For each avalanche, we
kept track of the number of buckets that tip and the volume
of water that exits the bottom of the network.

3. Spatial-Temporal Structure

[8] As F increases, the region swept by avalanches over
the course of an entire simulation transitions smoothly from
the entire domain to that of a small number of single bucket
wide channels (Figures 2 and 3). For F near 0, each bucket

distributes its flow to both connected buckets below and
thus events tend to widen with depth. Past events that have
cleared a zone of water will influence the general structure
of the edges of an individual event and create a complicated
‘‘sculpted’’ pattern that can occasionally force the narrow-
ing of an individual event (Figure 2a). As F increases, local
convergence begins to create channels. The swept region
takes on a braided structure within which individual events
traverse (Figure 2b). The end member of a purely conver-
gent hierarchical structure where all avalanches are con-
strained to an ever decreasing set of pathways (Figure 2c) is
found as F approaches 1. The F = 1 case corresponds to the
Scheideggar model of river networks [Scheideggar, 1967].
[9] Channeling is accompanied by a smooth monotonic

decrease in the fraction of the domain swept by avalanches
(saturation, Figure 3). However, the average number of
channels (channels, Figure 3) rises from a single ‘‘channel’’
the width of the network at F = 0, to a maximum value at
F � 0.8, and then falls again as F increases to 1. This non-
monotonic response in channel number is caused by the
global dominance of convergence for large F. Below the
maximum atF� 0.8, channel number, while highly variable,
has no trend with depth. However, above the maximum,
convergence imposes a narrowing trend away from the top
boundary that becomes most prominent above F � 0.95.
[10] Every avalanche begins with the tipping of a bucket

in the top row. For F small, outflow splitting causes the
general dissipation of an avalanche with depth. In this
divergent regime, many more small avalanches occur than
large and so the number of times buckets tip is high at the
top of the network and decreases with depth. In the braided
regime, this behavior continues, however, at any particular
depth, some pathways carry many more avalanches than
others due to the happenstance of local convergence (e.g.,
Figure 2d). But as convergence becomes prominent and
global within the hierarchical regime, the concentration of
flow is taken to the extreme such that as F nears 1, the
number of times a bucket tips increases with depth.
[11] Avalanche frequencyversus size scompiledoverentire

simulation periods is shown in Figure 4a while Figure 4b
illustrates a small portion of an avalanche size time series. For
F = 0, avalanche size is erratic in time and the avalanche size
distribution P(s) can be expressed as P(s) � s�texp(�s/s0)
[Jensen, 1998]. ForF= 0we found t to be 1.5, as expected for
themean field case [Dhar, 1999]. The roll-off indicated by the
exponential termwas not seen in our simulation forF = 0, but
as it is size dependent, andmay requiremuch larger systems to
observe. The roll-off also depends uponF, and asF increases,
the roll-off position is forced downward as channeling
removes sites from participation (see arrows in Figure 4a).
With convergent flow, the power-law scaling itself may also
begin to break as channels constrain event sizes to a limited
number of values. By F of � 0.8, this breakdown is clearly
evident as a rougheningof thedistribution (Figure4a) and asF
approaches 1, event size distribution transitions through a
Gaussian to approach the single value of 1000 where every
event cascades through the hierarchical network along single
bucket wide channels.
[12] As expected from the behavior of maximum ava-

lanche size, maximum outflow volumes exiting the network
at its bottom also decrease with F (Figure 5). Network
outflow volume approaches a constant minimum value of

Figure 1. Network of fracture intersections represented by
buckets, each bucket connects to two on the row above and
two on the row below.
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11 as F approaches 1 and convergence dominates. Interest-
ingly, a power-law behavior is not found at any F due to the
filtering of small avalanches. Filtering occurs because of the
downward directed nature of the TBM where input occurs
only along the top boundary and imposes a Gaussian
character to the outflow volume distribution.

4. Discussion and Conclusion

[13] We considered the influence of two experimentally
observed intersection behaviors on flow within fracture
networks: integration, and singly directed outflow. We find
that integration imposes avalanche behavior that yields an
erratic temporal response. The increase in singly directed
outflow within the domain causes a transition in spatial
regimes fromdivergent, to braided, to convergent hierarchical
and influences the temporal structure by forcing avalanches to
stay within constrained structures. Thus, for the set of
simple, experimentally supported, local intersection behavior
embodied within the TBM, self organized spatial-temporal
structure emerges within the network in context of slow
random addition of unit volumes of water along the top. As
the fraction of singly directed outflows increases, the power-
law scaling that dominates theF = 0 case is diminished by the

convergent flow that begins to constrain the size of events
within a braided structure. In the hierarchical regime, flow
approaches one dimensional with pulses fully channeled
within slender pathways, numerous and small.
[14] We expect that in natural fractured Vadose Zones, a

number of the assumptions embodied within the TBMwill be
violated. For example, threshold volumes for integrating
fracture intersections will likely not all be the same as we
have currently assumed. However, such variability either
with or without spatial correlation should not qualitatively

Figure 2. Spatial structure regimes: Avalanches are shown with color separation for a) divergent, F = 0.05, b) braided,
F = 0.8, and c) convergent, F = 0.98, spatial regimes. The number of tips for each bucket over the course of the simulation
is shown with color gradation for d) F = 0.8. Full 50 � 1000 networks are shown; viewing on a computer screen and
zooming in allows individual buckets to be seen.

Figure 3. Fraction of domain swept (saturation) and
number of channels as functions of F.
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influence results. It is also likely that when a bucket is passed
an ‘‘overwhelming’’ volume, its outflow distribution will
tend to split rather than be directed to a single fracture. In
combination with variable threshold volumes, pathway
switching should result at a number of critical intersections.
Pathway switching has been found in several experiments
[e.g., Glass et al., 2002a, 2003], and at present, we do not
know if it’s inclusion in the TBM will significantly alter
results. Finally, it is expected that some intersections will not
integrate but simply conduct. Replacement of integrators
with conductors will not influence the generation of spatial
structure but it should eventually dampen temporal fluctua-
tions if a large enough fraction of conductors are present. We
note that for the end member where every intersection acts as
a conductor, all avalanches will reach the bottom of the
network and be forced to the maximum size for the given
structure. In this limit, the outflow volume at the bottom of
the network will converge to the single ‘‘drop’’, that is, the
signal supplied at the top will come out the bottom without
modification.
[15] In conclusion, we have found that the local action of

fracture intersections can create a range of self organized

spatial-temporal structure at the scale of the fracture net-
work. Such macro-scale structure is of great importance to
applied hydrological problems in the fractured Vadose Zone
where understanding the possible spatial-temporal structure
for flow and transport is required.
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Figure 4. Temporal structure avalanche size: a) Log
frequency vs. log avalanche size for entire simulations with
example power-law and Gaussian distributions. Arrows
denote roll-off values. b)Avalanche size in time for twonested
cycle periods further illustrating the highly erratic temporal
behavior (F near 0) which is suppressed asF increases.

Figure 5. Temporal structure bottom outflow volume: Log
frequency vs. log bottom outflow volume for entire
simulations. Two example Gaussian distributions are shown
for comparison.
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