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Immiscible Displacement in Porous Media:
Stability Analysis of Three-Dimensional, Axisymmetric Disturbances
With Application to Gravity-Driven Wetting Front Instability
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As water infiltrates downward into an air-filled, water wettable porous medium, the wetting front
which forms may become unstable and allow the formation of downward moving fingers within the
vadose zone. In this paper we first review stability criteria and estimated finger widths determined
from linear stability theory in two-dimensional systems. Two approaches reported in the literature
which employ different formulations for the interfacial boundary conditions, yield different estimates
of the finger width. We extend the analyses to investigate finger diameter in three-dimensional systems
by considering axisymmetric disturbances. Results of the three-dimensional analyses are illustrated
through comparison to previously reported experimental results in three-dimensional systems.
Because either approach gives similar results for low system fluxes, in practice, it probably will not
matter which formulation is used. However, one approach represents the data better and contains only

traditionally measured porous media properties.

INTRODUCTION

The subsurface transport of water and contaminants
through the vadose zone to an aquifer is extremely important
in determining both groundwater recharge and contaminant
loading. Many processes influence this transport, some a
result of man, others a result of physical properties of the
unsaturated zone, weather, and biological activity. While in
many situations we have met with moderate success in
predicting recharge, the prediction of contaminant loading
has been far from successful. This failure is due in large part
to the fact that path must be known in contaminant trans-
port, and large-scale, averaged hydraulic properties, which
are useful to model the gross transport of water in the field,
are thus of less use.

The documented high variability of tracer and contami-
nant transport in the field raises the question of cause.
Usually, the answer encompasses the spatial variability in
hydraulic and transport properties, the presence of cracks/
joints/fractures or ‘‘macropore flow,”” and the temporal or
spatial variability in water and contaminant supply. In addi-
tion to these well-known causes, laboratory [Tabuchi, 1961,
Smith, 1967; Hill and Parlange, 1972, Diment and Watson,
1985; Tamai et al., 1987] and field (Starr et al., 1978, 1986;
Glass et al., 1988b; Hendrickx et al., 1988; van Ommen and
Dejksma, 1988; van Ommen et al., 1988] experiments have
shown gravity-driven instability in the flow field itself to
occur under some conditions. Figure 1 shows a sequence of
two photographs of water infiltrating through an initially dry,
water wettable, two-layer sand system with a fine-textured
layer overlying a coarse-textured bottom layer. As can be
seen in the photographs, water moves through ‘‘fingers’’ in
the coarse bottom layer as a result of the phenomenon of
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wetting front instability. When wetting front instability oc-
curs, the flat wetting front moving downward through the
unsaturated zone becomes unstable and breaks into fingers
which move vertically to the water table, bypassing a large
portion of the vadose zone. Solute transport through such an
unstable flow field is extremely nonuniform, and therefore
contaminant loading at the water table will be quite different
than if transport is assumed to be one-dimensional [Glass et
al., 1988a, 19894].

The subject of gravity-driven wetting front instability has
received increased attention in recent years with an empha-
sis on systematic experimentation [Glass and Steenhuis,
1984; Glass et al., 1989b, ¢, d; Baker and Hillel, 1990].
Most of the research has been concerned with fingering in
thin slab laboratory chambers where two-dimensional fin-
gers are forced. In horizontally extensive systems, however,
fingers are three-dimensional; therefore stability criteria and
relationships for finger properties as a function of system
parameters must be formulated for three-dimensional sys-
tems. Glass et al. [1990] have conducted a laboratory study
in large cylinders (30-cm diameter) to study wetting front
instability in initially dry sand (see Figure 2). Using the
dimensional analysis of Glass et al. [1989b], they measured
relationships for individual finger diameter and finger veloc-
ity as functions of system parameters. In this paper we use
linear stability theory to derive stability criteria and formu-
lations for the diameter of three-dimensional fingers and then
compare the theoretical results to the experiments of Glass
et al. [1990].

THEORY

The general theory of hydrodynamic stability addresses
the question of whether a given fluid flow is stable relative to
imposed disturbances [e.g., Lin, 1955; Chandrasekhar, 1961;
Drazin and Reid, 1981}. If it is not stable, then the flow will
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The downward growth of fingers within an initially dry homogeneous porous medium is shown in a sequence

of two images obtained through the use of a new moisture content visualization technique (see Glass et al. {1989d] for
color prints). Infiltration into an unsaturated porous medium can be unstable when the flux through the system is less
than its saturated conductivity. Water is supplied uniformly to this system at one-tenth the saturated conductivity
through a thin top layer of low conductivity (dark rectangular region at top of image). Fingers form directly beneath this
uniform supply surface. The dimensions of the medium are 45 ¢m wide, 76 cm high, and [ ¢m thick (into the plane of
visualization). If the thickness of the medium is less than the minimum finger width, a two-dimensional flow field is

forced, as is the case here.

usually not occur in nature as disturbances or perturbations
are always present. The general stability problem is formu-
lated in the following way. A certain flow situation is
governed by a set of hydrodynamic equations with solutions
for the state variables, say, velocity and pressure. We
consider an initial value problem with the values of the state
variables different from their ‘‘base flow’ or unperturbed
solution. If the solution of the perturbed initial value prob-
lem approaches that of the base flow solution as time
progresses, then the flow is stable with respect to the
imposed perturbation. If the solution does not approach the
base flow solution, but the perturbations do not grow in time,
then the flow is considered to be neutrally stable. However,
if the perturbations grow in time, then the solution is
unstable and will not commonly be found in nature.

For general immiscible displacement we consider two
immiscible fluids (denoted 1 and 2) of different viscosities
and densities within a homogeneous isotropic porous me-
dium. Fluid 1 displaces fluid 2 with a planar front or interface
between the two fluids moving at a constant velocity, V. The
interface is taken to be sharply defined such that its thick-
ness is much thinner than the wavelengths of the perturba-
tions. The z coordinate is taken parallel to the base flow
velocity, U, and the position of the front is denoted by z;.
We take gravity to be acting in the direction of z.

Darcy’s law governs incompressible flow through nonde-
formable porous media within the small Reynolds number

regime where inertial forces are negligible relative to viscous
forces,

k
uij= ———Vipi — pg2), (1)
nif;

where u is the pore velocity [L/f], k is the permeability [L?]
considered to be a property of the medium and a function of
0, u is the fluid viscosity [M/Lt], 6 is the fluid content
[L¥/L3), p is the fluid pressure [M/Lt?], p is the fluid
density [M/L*] considered here to be a constant, g is the
gravitational acceleration {L/t?], and the subscript denotes
the fluid (1 or 2). For k& constant in space (a homogeneous,
isotropic porous medium) and p and 6 constant within each
region occupied by either fluid, we may define the velocity
potential ¢[L>/1] as

b= —ﬁ(m—p.ﬂz) (2)

and (1) may be rewritten
ui=Ve, (3)

With continuity of mass
Vou,=0, 4)
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Fig. 2.
Glass et al. [1990]. Dry sand has been blown away from around the outside of the section leaving wet fingers standing.

we have for the velocity potential

Vi, = 0. (5)

Thus in a homogeneous isotropic porous medium with
Darcy’s law obeyed, for constant fluid properties and con-
stant 8; within the region occupied by the fluid, Laplace’s
equation for the velocity potential is taken to govern the flow
of each fluid within its region. Two boundary conditions
must be imposed at the interface between the two fluids that
reflect conservation of mass and momentum, respectively.
To solve the hydrodynamic stability problem, the solution of
(5), subject to these boundary conditions, is followed in
time.

Even though (5) is linear, the boundary conditions at the
interface are not, and thus to follow the evolution of the
interface in time generally requires numerical solution. A
simplification can be made, however, if we restrict ourselves
to small perturbations (amplitude/wavelength small) which
allow the equations to be linearized, that is, terms of
quadratic or higher degree in the perturbations and their
derivatives may be neglected. The solution to the set of
linear equations will then admit solutions containing an
exponential time factor, exp (ewt). If the real part of the
growth rate, w, is positive, then the flow is unstable; if it is
negative, the flow is stable; and if it is zero, the flow is
considered neutrally stable.

For two-dimensional disturbances a linear stability analy-
sis of (5) was first accomplished by Saffman and Taylor
[1958] and Chouke et al. [1959] and later by Parlange and
Hill £1976). The results of each of these analyses are different

Photograph of a 10-cm-high section removed from the 30-cm-diameter column used in the experiments of

as the assumptions in the formulation of the boundary
conditions at the interface are different.

Saffman and Taylor assumed continuity of normal velocity
and pressure to first order at the interface to obtain w,

m

=——[glp, — p)hp + 0:V(w» — 1. (6)
w ‘Ml*#:’ﬂr[gpl palky V(s — ]

where m is the wave number of the disturbance: for simplic-
ity here, and in the rest of the paper, we take 8, = 6, = 6
and kg = k(8;) = k,(8f). that is, the pore volume
conducting either fluid is the same. Equation (6) predicts
instability to occur when the quantity in the bracket is
positive. We may specialize (6) to the case of vertical water
infiltration where p; > p, and p; > u, to yield the
condition for instability

krgp
K

8,V <

or q, < Kg, (7

where ¢, (L/1) is the flux through the system (6;V}, and
K p(L/1) is the value of the hydraulic conductivity at 8.(K g
= kpgpi/my).

It can be seen from (6) and (7) that the wave number of the
perturbation does not influence the stability criterion. The
growth rate, however, increases without bound as nt in-
creases. Thus infinitesimal perturbations are predicted to
grow the fastest. If either the conservation of mass or
momentum conditions at the interface include a term depen-
dent on the curvature of the front, then an additional
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constraint for stability, dependent on the wave number of
the perturbation, is found. With this dependence on wave
number the most rapidly growing wavelength, which should
yield the expected finger width, will be finite and may be
found by extremization. However, since linear stability is
only valid for small perturbations, there is no guarantee that
the wavelength that initially grows the most rapidly will yield
the dominant finger width, especially in a highly nonlinear
system.

Chouke et al. [1959] assumed a relationship analogous to
the Laplace-Young relation exists between macroscopic
frontal curvature and a pressure jump across the front:

1 1
PI‘P2=U*7+—, (8)

1 2

m

where oy is the ‘‘effective macroscopic’’ surface tension,
and r, and r, are the two principal radii of curvature for the
macroscopic front. With (8) and the assumption of continuity
of normal velocity at the interface they obtained to first order
for o,

m

w=—""""—[g(p, - prk
(p1+ po)bp P PURF

+ 0V, — ) — oykpm?]. 9

Thus for a given density difference, viscosity difference, and

flow rate where (6) would stipulate instability, (9) states that

only wave numbers less than a critical value or wavelengths
O'*kF

above a critical wavelength, A, given by
12
. (10)
VOp(p, — 1) + kpglpy — pa)

will be unstable. The expected two-dimensional finger width,
w, should be given by one-half the most rapidly growing
wavelength; w is extremized with respect to A and special-
ized to the air/water system to yield

3o 1
w: ﬂ ———
pig 1 —q/Kp

Ao=2m
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(1

While the Laplace-Young relation does apply to Hele-Shaw
cells and within the pores of a porous medium, its validity at
a macroscopic level in porous media, as proposed in (8), is
questionable.

The analysis of Parlange and Hill [1976] uses a method
applied previously to laminar flame front stability by Mark-
stein [1951] to derive a relationship between frontal velocity
and curvature as a function of traditionally measured porous
media properties. Parlange and Hill argue that in porous
media where the fluid/fluid interface is not sharp in a
macroscopic sense, continuity of mass at the interface must
incorporate a term to account for capillary-induced *‘diffu-
sion’’ at the front. They derive a relationship between the
curvature of the front and the base flow velocity, U, to first
order as

1 1
U=V—F[—+—}, (12)

o rn
where V is the velocity of an unperturbed, flat front, and r,
and r, are the two principal radii of curvature. [[L?/1] was
found for either two- or three-dimensional fronts to be
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v Kd
e [
Yo OF = 89

where (L) is the pressure head of the invading fluid (¢ =
p/pg), and the subscripts 0 and F denote values at the front
and in back of the diffuse zone, respectively. I' is defined for
the fluid that would spontaneously displace the other by
capillary action (that is, the fluid that wets the medium), and
for the remainder of the paper we take this to be fluid 1. For
the air/water system in water wettable soil, I is defined for
the water, Using the approximate formula of Parlange [1975]
for the sorptivity, S[L/r'?],

(13)

s,%=r”(e+ 0r — 200K dy, (14)

Yo

where ¢ and K are both functions of ¢, (13) may be written
in terms of the sorptivity of the medium as

St

= ——m™m—,
2(0F — 6)°

(15)

where the subscript F denotes evaluation of § between
and ¢r. The base flow velocity is thus found to be a function
of the interfacial curvature and I', which in turn is a function
of porous media properties and initial conditions.

Assuming the pressure to be continuous across the front,
the application of (12) yields for @

m

w=——————[g(p, — pr)k
(my+ n2bp P PR
T O0pV(uy— ) —T(py + pa)0pm]  (16)
and for A,
27T (py + uq)6
K™ H2)UE (17

A, = .
© VOp(ua— )+ kpglp) — p2)

Parlange and Hill [1976] gave a more restricted form of (16)
assuming 8 = 6, the saturated moisture content, special-
ized for the air/water system. Without this assumption, one
can formulate for the finger width in the air/water system

52 [ 1
W = 1T

, 18
Ks(es - 90) 1- ‘Is/KF 1%

where §,, is evaluated between iy and ¢,, [Glass et al.,
1989c¢]; ¢, is the value of the pressure head that is first
reached at 6, as the porous media is wetted (below y,,, 8 no
longer varies with ). In deriving (18), the ratio S}/[OF -
69)K r] has been replaced by S2/[(8, — 6,)K,], a valid
approximation for 6y near 6.

Comparing (11) and (18) to experimental results by Glass
et al. [19895b, c] has shown that for two-dimensional fingers,
finger width obeys the results of Parlange and Hill. The fact
that agreement between the linear theory of Parlange and
Hill and experimental results presented by Glass et al.
[1989b, c] is so close is likely due to the approximations
used in their analysis. While the analysis linearizes with
respect to the perturbation so that only small disturbances
are treated, the fundamental nonlinearity in porous media
property is preserved. Therefore we now derive stability
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Drawings of chamber cross sections showing fingers (shaded near circles) for experiments reported by Glass

et al. [1990]: (a) experiment 1, (b) experiment 2, (¢) experiment 4. Numbers denote cross-sectional areas of individual

fingers.

criteria for three-dimensional systems and a formulation for
finger diameter using the approach of Parlange and Hill
[1976]. For purposes of comparison we also extend the
formulation of Chouke et al. [1959] to three-dimensional
axisymmetric fingers.

ANALYSIS OF THREE-DIMENSIONAL
AXISYMMETRIC PERTURBATIONS

To analyze the linear stability of the interface between the
two fluids moving at the base flow velocity, U, we suppose
that the position of the interface is perturbed, which we
denote by the function A(x, y, 1), about its location at z,. In
the three-dimensional problem we use cylindrical coordi-
nates and explore axisymmetric perturbations represented
by a series in Bessel’s functions. As for the two-dimensional
case, we need only to explore one component of this series
as any disturbance with axial symmetry may be represented

as a linear combination of orthogonal Bessel's functions.
Thus

A(r, t) = ae“'Jo(kr), (19)
where r[L] is the radial component, and « is the Bessel’s
function equivalent of a wave number. Laplace’s equation
may be written in cylindrical coordinates (r, z) as

19 { a¢,} 3%,
-—|r—f+t
ror ar

—=0.
az?

We may solve (20) by separation of variables. The solu-
tions for which the perturbation diminishes as z = — and
+x, respectively, and remains finite at r = 0, vield for ¢,
and ¢,, respectively,

(20)

¢, =B Jolkr)e* + fiz+gyr+ hjzr+ C;  (21)
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¢y = ByJolkrye “*+ foz + gor + hyzr + C, (22)

where B, C, f, g, and h are constants to be determined.
The spatial disturbance in interfacial position also causes a
perturbation in Darcy velocity «; which we denote with a
prime,
u;= U+ ul. (23)

Conservation of mass at the interface requires to first order
that the z component of u be equivalent in both fluids or

9, 9¢d,
az a9z

(24)

onz =z, +A. Substitution of (12) into (23) vields

1 1] a¢!
+.—
rq rs a9z

(25)

(continued)

on z = z, + A. The last term on the right-hand side is the
velocity of the perturbation in the z direction which may be
approximated to first order by the partial derivative of A
with respect to r. For small perturbations we may also
replace the curvature in (25) to first order by VZA. Thus

dd; dA
az ot

(26)

2

134 d°A
r or or

evaluated at z = zy + A. Substituting (19) into (26) and
making use of the properties of Bessel’s function with
respect to derivatives, we have

ae;

M4

&

=V +{w+ Me)Jo(kriae . 27

Applying (27) to (21} and 22) on z = z; + A, we have g =
h =0, f= Vand B given by
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w
B, = (FK + —)ae"“’ (28)
K
w -
By, =—|Tk + —|ae* (29)
K
Thus
(U‘ - -
¢ =Tk +=|Jo(kryae® "=~ + vz + C, (30)
%

w
b, = —(Fx+—)]o(xr)ae“”"':_:f'+ Vz+ Cs. 31)
K
To obtain C and w, we apply conservation of momentum at
the interface which we take as simply

P1=p2tpr (32)

5.982 cm'

(continued)

onz =z, + A, where pg is the pressure at the wet side of
the wetting front and constitutes a constant jump in pressure
across the macroscopic air/water interface. Thus we have by
(2) with 6] = 92 = 0,: and kF = kl(OF) = ’\2(0[.)

Opp
kp

Oru2ds
kp
onz = zy + A. Application of (33) yields to first order in A

P9z — =pgz - +pF (33)

ke
C=—————[g2dpy—p)) + -Vz (34)
(u:-m)ﬂp[ Ap2—p1) + PFl 1
where C; = C> = C, and
w=—————[glp, — p)kp
(“I+M)9F[gpn paky
+0pV(py—py) — Dlpy + wa)0px]. (35)
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Thus the system is unstable when the quantity in the bracket
of (35) is positive. We find stability governed by the viscosity
difference, the density difference, the imposed flow velocity,
and the ‘‘wavelength” of the disturbance. We also note that
the linear analysis does not predict traveling waves at the
interface because w cannot be imaginary.

The most rapidly growing or most unstable mode denoted
x4 is found by extremizing (35) with respect to x:

_ eV, — ) +keglp) — p2)

K : (36)
* (g~ p2)bp
Taking the finger diameter, d, to be
K d
J, —2— =0, (37)
we find
4.8
d=—. (38)
Kx

Specializing (36) for the case of downward water infiltration
into an air-filled porous medium where p; > p, and pu, >
M, we have

9.6 0
d=———. (39)
(KF - qs)
For a constant nonzero initial water content, 6, within the
region occupied by air, 8 may be replaced by (8 — 8,).
Because for soils the ratio SH{(8y — 6,)Kg] is a weak
function of 0 near 6; and we know from experiment that
fingers are at or near 8,, we may replace the values of S¢,
K, and 6 in this ratio with their values at saturation. Note
that § is now evaluated between ¢ and ¢, denoted §,,.
Substitution for I from (15) yields

d=4.8 . (40)

s2 |
Ks(as - 00) I - qx/KF

Following a similar stability analysis of three-dimensional
axisymmetric perturbations using the Chouke conditions at
the interface, that is, (8) and U = V, we arrive at the relation
for w,

w=——"--—/[glp — pak
(M|+P~2)9F[ p1mPRE
+ 0pVip, — 1)) — oxkpk?] (1)

and the predicted finger diameter specialized for the water/
air system

172

3o, 1
d=4.38 (42)

P9 1 —q/Kp

A form of (41) was first derived by Peters and Flock [1981].

DiscussioN

The results for three-dimensional axisymmetric perturba-
tions using either the Parlange and Hill [1976} (equations
(35) and (40)) or the Chouke et al. [1959] (equations (41) and
(42)) approach are identical to their counterparts for two-
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dimensional perturbations (equations (16} and (18), and (9)
and (11), respectively) except for a constant factor which in
the three-dimensional case is 4.8 and the two-dimensional
case is .

Equations (40) and (42) predict a minimum finger width as
g, — 0 to be given by 4.852/[(8, — 0,)K,] and 4.8(3c,/
pg) 2, respectively. While (40) contains traditionally mea-
sured porous media properties, o, must be found by fitting
(42) to experimental data from fingering flow fields. Thus the
value of d(0) cannot be used to distinguish the models. The
functional behavior with ¢,, however, could allow such a
distinction because the exponent in (40) and (42) differs by a
power of ; a possibility we explore further.

From both two- and three-dimensional experiments we
have found that the flux through the finger g is essentially
equal to Ky, and unit gradient drives the flow within the
finger [Glass et al., 1989c]. We have also found that as g
increases, qp and thus K also increase as does the average
finger width or diameter, d. We may also write

q9r = Bds, (43)
where B is the reciprocal fractional cross-sectional area of
the system in fingers and is itself a function of g, the form
of which must be found through experimentation. We may
now rewrite (40) and (42) as

l n
d = d(()){———(l — I/B)} ,

where n is 1 for (40) and 1 for (42).

We can test (44) on a preliminary basis using the three
two-layer experiments reported by Glass et al. [1990] where
an entire unstable flow field was generated and both g and d
were measured (experiments 1, 2, and 4). Drawings of
chamber cross sections taken near the bottom of the cham-
ber for these three experiments are shown in Figure 3
(fingers are shaded, near circles). Average § and d for these
experiments give the three points in Figure 4; d(0) can be
estimated from the smallest finger diameter observed in the
experiments, found to be 1.9 cm (experiment 4, depth-
averaged d for finger 27). This value represents an upper
bound on d(0) because it was not measured at near-zero
system flux. However, we will use it conservatively to curve
fit (44) yielding the two curves in Figure 4. While the data are
indeed limited, n = | appears to give a slightly better fit than
n = % We may consider the relationship predicted among
d(), §2, K,. and 6, as an additional check on (40). As
reported by Glass et al. [1990], the value for S% of 5.5
cm?/min for the coarse sand used in the experiment had a
high degree of uncertainty associated with it (a standard
deviation larger than the value itself). Taking the upper
bound on d(0) (1.9 cm), K, (24.7 = 3 cm/min), and 8, (0.41),
we calculate from (40) a value of $2 (6.1 cm?/min) which is
well within the error of its measurement. Development of a
measurement technique for § in coarse material is required
to conclusively test the applicability of (40).

Additional experimentation in full three-dimensional un-
stable flow fields for 1/8 above 0.6 would be of use to
distinguish the models. However, experimentation at such
high 1/8 is problematical. For the same fractional area in
fingers for two- and three-dimensional geometries, fingers in
three dimensions will be closer than in two dimensions. In

(44)
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COMPARISON OF ANALYTICAL FORMS

DATA FROM GLASS ET AL. (1990)

10 /
5 <
e -
T 7
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° 6 1
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g *7 1
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o
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FRACTION OF CHAMBER IN FINGERS, 1/BETA

Fig. 4. Finger diameter versus the fraction of chamber area in fingers (1/8). Squares represent experiments 1, 2, and
4. The smallest observed finger diameter is shown as the star and used to curve fit equation (44) for n = 1 and { (solid

curves).

Fig. 5. Drawing of chamber cross section showing wetted region (shaded) for experiment 3 from Glass et al. [1990].
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fact, fingers will touch if they are arranged in a square lattice
for 1/8 = m/4. As an example, Figure 5 shows the cross
section of experiment 3 in Glass et al. [1990] where 1/8 was
0.82. As one can see, almost all fingers are touching each
other and the determination of clear finger diameters is
impossible.

CONCLUSION

Two different approaches to the formulation of conserva-
tion of mass and momentum at the interface between two
immiscible fluids are seen to yield functional forms for the
behavior of expected finger diameter as a function of the flux
through the system that differ by the exponent n (either 1 or
1). While the approach based on that of Parlange and Hill
[1976] (n = 1) appears to fit experimental data slightly
better, in practice, it may not be very important to know the

exact value of n. For most nractical citnations where fin-
ot n. rFor ¢ 1n

vAQvl vaiul WIVSL pravuldal Situaualns Wk

gering will play a major role, 1/8 will be much less than 1. It
can be seen in Figure 4 that d varies only slightly over the
range 0 < 1/8 < 0.5, and within this range either form will
yield reasonable results. The form based on the analysis of
Parlange and Hill however, also contains only traditionally
measured hydraulic properties of the porous medium and
yields directly the minimum finger diameter, while the form
based on the analysis of Chouke et al. [1959) contains the
ill-defined effective macroscopic surface tension.
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Figure 1 from page 2.

Fig. 2. Photograph of a 10-cm-high section removed from the 30-cm-diameter column used in the experiments of
Glass et al. [1990]. Dry sand has been blown away from around the outside of the section leaving wet fingers standing.






